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ABSTRACT

We investigate quantum chromodynamics (QCD) in the non-perturbative regime with the light-front

Hamiltonian formalism. Our explorations are from two aspects, the hadron bound states and the high energy

scatterings.

We first study the heavy quarkonia system within the basis light-front quantization approach. We review

solving the heavy quarkonium system in the valence Fock sector with effective Hamiltonian, and discuss

how one could extend the framework to higher Fock space. We then study the properties of heavy quarkonia

through electromagnetic processes, via elastic form factors, radiative transitions and decay constants. We

investigate the effect of different current components, different magnetic projections of the states and differ-

ent reference frames in the valence Fock sector calculation on the light front. We suggest preferred choices

based on our analysis, and carry out numerical calculations of those quantities with the valence light-front

wavefunctions. Comparisons are made with experimental data and other theoretical calculations.

We also apply the light-front Hamiltonian approach to a time-dependent problem, the quark nucleus

scattering. We carry out an explicit evolution of the quark by decomposing the time-evolution operator into

many time increments. We calculate the scattering cross sections and study the evolution of the quark in

the color space and the coordinate space. We reveal interesting sub-eikonal effects on the quark’s transverse

location.

Those studies also show exciting possibilities for future applications of QCD bound states and time-

dependent problems in the non-perturbative quantum field theory.
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CHAPTER 1. INTRODUCTION: QUANTUM FIELD THEORY ON THE LIGHT

FRONT

Solving quantum field theories from first principles is the key to addressing fundamental questions such

as ‘what is matter made of?’. This thesis addresses the non-perturbative approach to quantum field theories

within the light-front Hamiltonian formalism, with two different but related investigations, the hadron bound

states and the high energy scatterings. This chapter provides the necessary background information of

quantum field theory in the light-front Hamiltonian formulation.

1.1 Quantum field theory

Quantum field theory arose out of the confluence of special relativity and quantum mechanics. To quote

from A. Zee in his book of the quantum field theory [16], “quantum field theory was born of the necessity

of dealing with the marriage of special relativity and quantum mechanics, just as the new science of string

theory is being born of the necessity of dealing with the marriage of general relativity and quantum mechan-

ics.” In the quantum field theory, particles are treated as excited states (also called quanta) of their underlying

fields. Interactions between particles are described by interaction terms in the Lagrangian involving their

corresponding fields. A physical field can be thought of as the assignment of a physical quantity at each

point of space and time. Quantum field theory is therefore a tool that one can use to apply to any particular

theory of particles.

There are four fundamental interactions of nature, namely, the electromagnetic, the weak, the strong and

the gravitational interaction. The Standard Model of particle physics is the theory describing the first three

of them in a unified framework. An interaction is described as an exchange of bosons between the objects

affected, such as a photon for the electromagnetic interaction and a gluon for the strong interaction. In the

Standard Model, the electromagnetic and the weak interactions are described uniformly as a Yang–Mills

field with an SU(2)× U(1) gauge group. The strong interaction is described by a Yang-Mills theory of the
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SU(3) gauge group, known as quantum chromodynamics (QCD). The fundamental particles of the strong

interaction are quarks and gluons, which make up composite hadrons such as the proton, neutron and pion.

The basic fermions are quarks in three different color states, forming the fundamental representation of the

SU(3) group. The gauge bosons are gluons in eight different color states, forming the adjoint representa-

tion of the SU(3) group. QCD exhibits two main properties, color confinement and asymptotic freedom.

Color confinement is the phenomenon that color charged particles (such as quarks and gluons) cannot be

isolated, and therefore cannot be directly observed. Quarks and gluons must clump together to form color-

less (color singlet) bound states, hadrons or glueballs. This is a dynamical property and cannot be obtained

from perturbation theory. Asymptotic freedom is a property that causes interactions between particles to

become asymptotically weaker as the energy scale increases and the corresponding length scale decreases.

This property allows the perturbative calculations at high energies. The main tool of the perturbative cal-

culations are the Feynman diagrams, where one expands the path integral in an increasing power of the

coupling. However, such method breaks down for strong coupling regime. Non-perturbative treatments of

QCD are required to address those most challenging and exciting problems of nuclear physics, including the

confinement, the dynamical chiral symmetry breaking and the properties of QCD bound states.

Our investigation of the non-perturbative QCD uses the light-front quantum field theory. The quan-

tum states are defined on the light-front time x+ = x0 + x3 (see conventions of the light-front coordinates

in Appendix A.1). Diagonalizing the QCD Hamiltonian directly provides the hadron spectrum and wave-

functions. The wavefunctions encode the information of the internal structures of the bound states, and

observables can be obtained by evaluating the associated operators on the states. This formalism could also

generate real-time evolution of quantum fields, which could be applied to study high energy scattering pro-

cesses. There are also many other non-perturbative approaches to solve the quantum field theory, including

effective field theories [17], QCD sum rules [18], lattice QCD [19, 20], and Dyson-Schwinger equations

(DSEs) [21, 22, 23, 24, 25].
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1.2 Forms of relativistic dynamics

Since quantum field theory is formulated to reconcile quantum mechanics with special relativity, let us

first study how symmetries like Lorentz invariance appear in quantum setting. In particular, we would like

to combine the principle of relativity with the Hamiltonian formulation of dynamics.

Einstein’s principle of relativity requires that physical laws shall be invariant under transformations from

one space-time coordinate system to another, or in other words, invariant in all inertial frames of reference.

The whole group of the transformations is the inhomogeneous Lorentz group, also known as the Poincaré

group. Quantum theory postulates that physical states are represented by rays1 in Hilbert space. Therefore

we need to implement a representation of the Poincaré group. The Poincaré algebra is the Lie algebra of the

Poincaré group, and it is given by the commutation relations:

[Pµ, Pν] = 0 ,

[Pµ,Mαβ] = i(gµαPβ − gµβPα) ,

[Mµν,Mρσ] = i(gµσMνρ − gνσMµρ + gνρMµσ − gµρMνσ) .

(1.1)

It has ten generators, four generators of translations Pµ = (P0, P1, P2, P3) and six generators of Lorentz

transformations Mµν. The latter can be further split into the three generators of rotations Ji = 1/2εi jkM jk

and 3 generators of boosts Ki = M0i. The cyclic symbol εi jk is 1 if the indices i jk are in cyclic order, and 0

otherwise.

In quantum mechanics, and also in the quantum field theory, the dynamical evolution of a quantum state

satisfies the Schrödinger equation,

i
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 . (1.2)

For stationary states,

|ψ(t)〉 = e−iEt |ψ(0)〉 , (1.3)

and it leads to the bound-state equation

H |ψ(0)〉 = E |ψ(0)〉 , (1.4)

1A ray is a set of normalized vectors differed by multiplying an arbitrary scalar of unit magnitude [26].
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where E is the bound state energy. Though in its original form the time t is the regular time, there are

actually multiple choices of the time variable as a foliation of spacetime2. P. A. M. Dirac brought up three

forms of relativistic dynamics, namely the instant form, the point form, and the front form [28].

In the instant form, one works with dynamical variables referring to physical conditions at some instant

of time, x0. The Hamiltonian is P0. The transformations of coordinates associated with the momenta P1, P2,

P3 and the rotations J1, J2, J3, leave the instant invariant, and are thus kinematic. The energy P0, and the

boosts K1, K2, K3 are dynamical. The instant form seems most intuitive since its time variable is the regular

time. Although it is the conventional choice for quantizing field theories, it has many disadvantages. The

experiment determining the wavefunction ψ(t, ~x) solved from the evolution equation of Eq. (1.2) requires

the simultaneous measurement of all positions of the state. A more practical experimental measurement

scatters one plane-wave laser beam, and the signal reaches each part of the object at the same light-front

time x+ = t + z/c (this is the same with the definition x+ = x0 + x3 with the unit c = 1).

The point form of dynamics describes physical conditions on the three-dimensional surface, τ =

√
xµxµ − a2 =√

(x0)2 − (x1)2 − (x2)2 − (x3)2 − a2 with x0 > 0. The energy P0, and the momenta P1, P2, P3 are all dynam-

ical. The kinematic group consists of the boosts K1, K2, K3 and the rotations J1, J2, J3, which leave

the origin point invariant. The point form of relativistic quantum mechanics has been advocated as an ap-

propriate framework for calculating the electroweak structure of mesons and baryons within the scope of

constituent-quark models [29, 30, 31].

The front form considers the three-dimensional surface in space-time formed by a plane wave front

advancing with the velocity of light. The theory describes physical conditions at some constant light-front

time x+ = x0 + x3. The front form has the largest number(seven) of kinematic generators that leaves the

light front invariant. They are, the transverse momentum P1, P2, the longitudinal momentum P+ = P0 + P3,

the transverse boosts E1 = K1 + J2, E2 = K2 − J1, the rotation in the x-y plane J3, and the boost in the

longitudinal direction K3. The remaining generators {P− = P0 − P3, F1 = J1 + K2, F2 = J2 − K1} are

dynamical. P− is the light-front Hamiltonian. It is usually convenient to use the light-front coordinates

2By foliation it means that the manifold of spacetime is decomposed into hypersurfaces and there exists a smooth scalar field
(the “time”) which is regular in the sense that its gradient never vanishes, such that each hypersurface is a level surface of this scalar
field. See more discussions on foliation in Ref. [27] for more discussions.
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when implementing the light-front dynamics. We include the conventions of the light-front coordinates in

this thesis in Appendix A.1.

A visualization of the “time” in these three forms is presented in Fig. 1.1. Be aware that there also

exists two other forms of dynamics, with the time defined as τz =
√

(x0)2 − (x3)2 − a2 with x0 > 0 and

τ⊥ =
√

(x0)2 − (x1)2 − (x2)2 − a2 with x0 > 0 respectively, though they have a rather small kinematical

group and are not commonly used [32].

(a) instant form (b) front form (c) point form

Figure 1.1 “Time” in the three forms of dynamics. The gray cones are the reference surfaces of the
light cones, t =

√
(x0)2 + (x3)2. The equal-“time” surfaces are in red. In (a), the instant

form, time is defined as x0 and the shown equal-time surface is x0 = 0. In (b), the front
form, time is defined as x+ = x0 + x3 and the shown equal-light-front-time surface is

x+ = 0. In (c), the point form, time is defined as τ =

√
xµxµ − a2 with x0 > 0 and the

shown equal-point-time surface is τ = 0.

The investigations carried out in this work employ the front form. The quantum field theory quantized

on the light-front surface x+ = 0 is the light front quantum field theory. In the following section, we will

carry out the canonical quantization of the QCD on the light front.

1.3 Light front quantum field theory of QCD

The strong interaction between quarks and gluons is described by QCD, and its Lagrangian reads

LQCD = −
1
4

Fµν
aFa

µν + Ψ(iγµDµ − m)Ψ . (1.5)
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Aνa is color vector potential, with the gluon index a = 1, 2, . . . , 8. The quark field Ψα,c, carries the Dirac index

α = 1, 2, . . . , 4 and the color index c = 1, 2, 3, which are usually suppressed in expressions like ΨγµDµΨ =

Ψcγ
µ(Dµ)cc′Ψc′ . m = mI3 = mδcc′ is diagonal in color space. The vector potential can be parameterized

as (Aµ)cc′ = T a
cc′A

µ
a by the color matrices T a

cc′ , and its matrix form can be found in Appendix A.7. Fµν
a ≡

∂µAνa−∂
νAµa −g f abcAµbAνc is the field tensor, and Dµ ≡ ∂µI3 + igAµ is the covariant derivative. We follow the

convention of the covariant derivative from Ref. [33], such that g is the chromo-electric charge of the anti-

fermion. Note that there exists another widely used convention that assigns g to the chromo-electric charge

of the fermion instead [34]. The structure constants f abc are complete anti-symmetric, f abc = f cab = − f acb.

In the following derivations, we will drop the identity operator in the color space, I3, for simplicity. We

present the canonical Hamiltonian obtained from the QCD Lagrangian, and we leave the details of the

derivation in Appendix B.

The QCD Lagrangian is a functional of the twelve components Aµ, Ψα, Ψα and their space-time deriva-

tives. The equations of motion are the color-Maxwell equation,

∂λFλκ
s = gJκs , with the current densityJκs ≡ f sacFκµ

a Ac
µ + ΨγκT sΨ , (1.6)

and the color-Dirac equation,

[
iγµ(∂µ + igAµ) − m

]
Ψ = 0 . (1.7)

We take the most convenient gauge choice in light-front quantization, the light-cone gauge A+ = 0 [35, 36].

The + component of Eq. (1.6) does not contain time derivatives, making A− a constrained variable. From

the fermion equation of motion of Eq. (1.7), we could also identify the projected component Ψ− = Λ−Ψ

(see definitions of the projection operators Λ± in Appendix A.1) as a constrained variable. The dynamical

degrees of freedom are Ψ+ = Λ+Ψ and Ai (i = 1, 2).

The Hamiltonian density is obtained through a Legendre transformation,

P+ =(∂+As
κ)Π

+
As
κ

+ (∂+Ψ)Π+
Ψ + (∂+Ψ)Π+

Ψ
− L , (1.8)
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where the generalized momentum fields are Πκ
r ≡ δL/δ(∂κφr). The light-front QCD Hamiltonian P− =

2P+ = 2
∫

dx+ d2x⊥ P+ is then derived as,

P−QCD =

∫
dx− d2x⊥

{
−

1
2

A j
a(i∇⊥)2Aa

j +
1
2

Ψ̄γ+ m2 − ∇2
⊥

i∂+
Ψ

− g f abc∂iA j
aAb

i Ac
j + gJ+

a Aa
+ + gΨ̄γi AiΨ

−
1
2

g2J+
a

1

(∂+)2 J+
a +

g2

4
f abcAi

bA j
c f ae f Ae

i A f
j

+
g2

2
Ψ̄γi Ai

γ+

i∂+
γ j A jΨ

}
.

(1.9)

The two terms in the first line are the kinetic energy for the gauge field and the fermion respectively. The

three terms in the second line can be written collectively as gJµa Aa
µ, which include the three-gluon-interaction,

the gluon emission and quark-antiquark-pair-production processes. The two terms in the third line are

the instantaneous-gluon-interaction and the four-gluon-interaction respectively. The last line contains the

instantaneous-fermion-interaction. The vertex diagrams for these interactions are shown in Fig. 1.2

(a) The three-
gluon interaction,
−g f abc∂iA j

aAb
i Ac

j

(b) The gluon emission,
gΨ̄γµAµΨ

(c) The four-
gluon interaction,
1/4g2 f abcAi

bA j
c f ae f Ae

i A f
j

(d) The instantaneous-
quark-interaction,
1/2g2Ψ̄γi Ai

γ+

i∂+ γ
j A jΨ

(e) The instantaneous-gluon-interaction, −1/2g2 J+
a

1
(∂+)2 J+

a

Figure 1.2 Vertex diagram representation of the light-front QCD Hamiltonian in Eq. (1.9). The
solid lines represent the quark operators, and the curly lines represent the gluon opera-
tors. The instantaneous quark (gluon) propagator 1/(i∂+) [1/(∂+)2] is represented by a
quark (gluon) line with a bar across it.
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The fields for QCD admit free-field expansions at x+ = 0 [33],

Ψαc f (x) =
∑
λ=± 1

2

∫
d2 p⊥ dp+

(2π)32p+
θ(p+)

[
bq(p)uα(p, λ)e−ip·x + d†q(p)vα(p, λ)eip·x

]
, (1.10)

Aµa(x) =
∑
λ=±1

∫
d2 p⊥ dp+

(2π)32p+
θ(p+)

[
aq(p)εµ(p, λ)e−ip·x + a†q(p)ε∗µ(p, λ)eip·x

]
, (1.11)

where θ(p+) is the Heaviside unit step function. α denotes the spinor components of Ψ, and µ denotes the

vector components of A. λ is the light-front helicity of the corresponding field (λ = ±1/2 for quarks and

λ = ±1 for gluons). c = 1, 2, 3 and a = 1, 2, . . . , 8 are the color indices of quarks (antiquarks) and gluons

respectively. q contains the quantum numbers of single particle state, for fermion q = {λ, c, f (flavor)} and

for gluons q = {λ, a}. The creation and annihilation operators obey the commutation and anti-commutation

relations. For gluons,

[aλa(p), a†λ′a′(p′)] = 2p+θ(p+)(2π)3δ3(p − p′)δλλ′δaa′ , (1.12)

where δ3(p − p′) = δ(p+ − p′+)δ2(~p⊥ − ~p′⊥). For quarks and antiquarks,

{bλc f (p), b†
λ′c′ f ′(p′)} = 2p+θ(p+)(2π)3δ3(p − p′)δλλ′δcc′δ f f ′

{dλc f (p), d†
λ′c′ f ′(p′)} = 2p+θ(p+)(2π)3δ3(p − p′)δλλ′δcc′δ f f ′ .

(1.13)

All the other commutation and anti-commutation relations vanish,

[aλa(p), aλ′a′(p′)] = {bλc f (p), bλ′c′ f ′(p′)} = {dλc f (p), dλ′c′ f ′(p′)} = {bλc f (p), d†
λ′c′ f ′(p′)} = · · · = 0 . (1.14)

The anti-commutation relation for the fermion fields follows as

{Ψαc f (x),Ψ†
βc′ f ′(y)} =

∑
λ,λ′

∫
d2 p⊥ dp+

(2π)32p+

∫
d2k⊥ dk+

(2π)32k+

[
{bq(p), b†q′(k)}uα(p, λ)

[
ū(k, λ′)γ0]

β

e−ip·x+ik·y + {d†q(p), dq′(k)}vα(p, λ)
[
v̄(q, λ′)γ0]

βe
ip·x−ik·y

]
=

∑
λ

∫
d2 p⊥ dp+

(2π)32p+

[
u(p, λ)ū(p, λ)γ0e−ip·(x−y) + v(p, λ)v̄(p, λ)γ0eip·(x−y)

]
αβ
δλλ′δc,c′δ f , f ′

=

∫
d2 p⊥ dp+

(2π)32p+

[
(/p + m)γ0e−ip·(x−y) + (/p − m)γ0eip·(x−y)

]
αβ
δc,c′δ f , f ′ .

(1.15)
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The commutation relation for the dynamical components (i = 1, 2) of the gluon fields reads

[Aia(x), A†ja′(y)] =
∑
λ,λ′

∫
d2 p⊥ dp+

(2π)32p+

∫
d2k⊥ dk+

(2π)32k+

[
[aq(p), a†q′(k)]εi(p, λ)ε∗j (k, λ

′)e−ip·x+ik·y

+ [a†q(p), aq′(k)]ε∗i (p, λ)ε j(k, λ′)eip·x−ik·y
]

=
∑
λ

∫
d2 p⊥ dp+

(2π)32p+

[
εi(p, λ)ε∗j (p, λ)e−ip·(x−y) + ε∗i (p, λ)ε j(p, λ)eip·(x−y)

]
δλλ′δaa′

=
∑
λ

∫
d2 p⊥ dp+

(2π)32p+

[
e−ip·(x−y) + eip·(x−y)

]
δi jδλλ′δaa′ .

(1.16)

1.3.1 Fock space representation

The Hilbert space for the single-particle creation and destruction operators is the Fock space. The Fock

space can be decomposed into sectors with n Fock particles, in which the number of quarks, antiquarks and

gluons, N, N̄ and Ñ, respectively and n = N + N̄ + Ñ. Fock states can be defined in terms of the eigenstates of

the free-field Hamiltonian, i.e., the light-front kinetic operator, and can be obtained by applying the creation

operators on the Fock vacuum |0〉. The hadron state vector |ψh(P, j,m j)〉 can be expanded in the Fock space.

We use j as the total spin of meson and m j as its magnetic projection. In the single particle coordinates, it

reads

|ψh(P, j,m j)〉 =

∞∑
n=0

∫ n∏
i=1

dκ+
i d2κi⊥

(2π)32κ+
i

θ(κ+
i )2P+θ(P+)(2π)3δ3(κ1 + κ2 + · · · + κn − P)

×
∑
{li,si}

ψ
(m j)
n/h ({κi, si, li})c

†

s1l1
(κ1) . . . c†snln

(κn) |0〉 ,
(1.17)

where i is the index of the Fock particle, and it takes values of i = 1, . . . , n for the n-particle sector. c†sili
(κi)

is the creation operator for the corresponding constituent (quark, antiquark or gluon). κi is the momentum,

and each particle is on its mass-shell κ2
i = m2

i . l is the color index, and s is the spin projection of the particle.∑
{li,si} means the sum of all color and spin arrangements in the string of the creation operators resulting in a

sum over a unique set of creation operators with the restriction of producing color-singlet projected states.

The construction of the global color singlets for multi-particle states can be found in Ref. [1]. We suppress

flavor indices but they can be included in a straightforward manner. ψ(m j)
n/h ({κi, si, li}) are the projection of the

physical states to the Fock states, called the light-front wavefunctions (LFWFs).
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In the relative particle coordinates, we define

xi ≡
κ+

i

P+
, ~ki⊥ ≡ ~κi⊥ − x~P⊥ . (1.18)

xi are known as the longitudinal momentum fractions; ~ki⊥ are the relative transverse momenta. They are

independent of the total momentum of the bound state, and satisfy 0 < xi < 1,
∑n xi = 1 and

∑~ki⊥ = ~0. The

hadron state vector now reads,

|ψh(P, j,m j)〉 =

∞∑
n=0

∫ n∏
i=1

dxi d2ki⊥

(2π)32xi
2(2π)3δ(x1 + x2 + · · · + xn − 1)δ2(~k1⊥ + ~k2⊥ + · · · + ~kn⊥)

×
∑
{li,si}

ψ
(m j)
n/h ({xi,~ki⊥, si, li})c

†

s1l1
(x1P+,~k1⊥ + x1~P⊥) · · · c†snln

(xnP+,~kn⊥ + xn~P⊥) |0〉 ,
(1.19)

with the LFWFs ψ(m j)
n/h ({xi,~ki⊥, si, li}) in the relative coordinates.

The hadron state vector is normalized as,

〈ψh(P, j,m j)|ψh′(P′, j′,m′j)〉 = 2P+θ(P+)(2π)3δ3(P − P′)δm j,m′jδ j, j′δh,h′ . (1.20)

Then the normalization of the LFWFs reads,

∞∑
n=0

∫ n∏
i=1

dxi d2ki⊥

(2π)32xi
2(2π)3δ(x1 + · · · + xn − 1)δ2(~k1⊥ + · · · + ~kn⊥)

∑
{li,si}

∣∣∣∣ψ(m j)
n/h ({xi,~ki⊥, si, li})

∣∣∣∣2 = 1 . (1.21)

For practical calculations, the infinite Fock space needs to be truncated. For heavy quarkonium, the valence

quark (q) + antiquark (q̄) Fock sector |qq̄〉 makes the leading contribution, and is followed by higher Fock

sectors which could include a gluon (g) such as |qq̄g〉 as well as |qq̄qq̄〉. The order of the higher Fock sectors

to include in calculations is related to the description of the model and the specific problem. In solving

the meson bound states from the light-front QCD Hamiltonian, it is natural to include the |qq̄g〉 sector

besides the valence sector, such that the quark-gluon interaction from QCD could be directly implemented.

However, in the cases of the radiative transition such as J/ψ → ηc + γ(∗) and the strong decay such as

ω→ π+ + π−, it is essential to take into account the |qq̄qq̄〉 sector since the |qq̄qq̄〉 → |qq̄〉 term would make

nontrivial contributions. We will write out the light-front wavefunction representation in both the |qq̄〉 space

and the |qq̄〉 + |qq̄qq̄〉 space where we anticipate adopting effective interactions to account for the exchange

of gluons.



www.manaraa.com

11

• |qq̄〉

The projection of the quarkonium state on the |qq̄〉 sector reads,

|hqq̄(P, j,m j)〉 =
∑
s,s̄

∫ dk+
q d2kq⊥

(2π)32k+
q
θ(k+

q )
∫ dk+

q̄ d2kq̄⊥

(2π)32k+
q̄

θ(k+
q̄ )2P+θ(P+)(2π)3δ3(kq + kq̄ − P)

×
1
√

Nc

Nc∑
i=1

ψ
(m j)
ss̄/h(kq, kq̄)b†si(k1)d†s̄i(k2) |0〉

=
∑
s,s̄

∫ dk+
q d2kq⊥P+

(2π)32k+
q (P+ − k+

q )
1
√

Nc

Nc∑
i=1

ψ
(m j)
ss̄/h(kq, P − kq)b†si(kq)d†s̄i(P − kq) |0〉 .

(1.22)

kq (kq̄) is the momentum of the quark (antiquark) and s (s̄) is the spin projection. In the |qq̄〉 sector, it is

convenient to decouple the color configuration from the spatial and spin parts of the LFWFs. Here we

write the color singlet configuration of the qq̄ state, 1/
√

3(rr̄ + gḡ + bb̄), explicitly with color index i

and Nc = 3 in the above equation. ψ(m j)
ss̄/h(kq, kq̄) contains the spacial and spin parts of the wavefunction.

In terms of the relative momenta,

x ≡
k+

q

P+
, ~k⊥ ≡ ~kq⊥ − x~P⊥ . (1.23)

The quarkonium state reads,

|hqq̄(P, j,m j)〉 =
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψ

(m j)
ss̄/h(~k⊥, x)

×
1
√

Nc

Nc∑
i=1

b†si(xP+,~k⊥ + x~P⊥)d†s̄i((1 − x)P+,−~k⊥ + (1 − x)~P⊥) |0〉 .

(1.24)

The normalization relation of the valence LFWF ψ(m j)
ss̄/h(~k⊥, x) is

∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψ

(m′j)∗
ss̄/h′ (~k⊥, x)ψ(m j)

ss̄/h(~k⊥, x) = δhh′δm j,m′jδh,h′ . (1.25)

The normalization relation of the hadron state vector follows as

〈hqq̄(P, j,m j)|h′qq̄(P′, j′,m′j)〉 = 2P+(2π)3δ3(P − P′)δhh′δm j,m′jδ j, j′ . (1.26)
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• |qq̄〉 + |qq̄qq̄〉

The projection of the quarkonium state on the |qq̄〉 + |qq̄qq̄〉 space reads,

|hqq̄qq̄(P, j,m j)〉 =
∑
s,s̄

∫ dk+
q d2kq⊥

(2π)32k+
q
θ(k+

q )
∫ dk+

q̄ d2kq̄⊥

(2π)32k+
q̄

θ(k+
q̄ )2P+θ(P+)(2π)3δ3(kq + kq̄ − P)

×
1
√

Nc

Nc∑
i=1

ψ
(m j)
ss̄/h(kq, kq̄)b†si(kq)d†s̄i(kq̄) |0〉

+

∫ 4∏
i=1

dk+
i d2ki⊥

(2π)32k+
i

θ(k+
i )2P+θ(P+)(2π)3δ3(k1 + k2 + k3 + k4 − P)

×
∑
{li,si}

ψ
(m j)
s1 s2 s3 s4/h

({ki, li})b
†

s1l1
(k1)d†s2l2

(k2)b†s3l3
(k3)d†s4l4

(k4) |0〉

=
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψ

(m j)
ss̄/h(~k⊥, x)

×
1
√

Nc

Nc∑
i=1

b†si(xP+,~k⊥ + x~P⊥)d†s̄i((1 − x)P+,−~k⊥ + (1 − x)~P⊥) |0〉

+

∫ 4∏
i=1

dxi d2ki⊥

(2π)32xi
2(2π)3δ

(∑
xi − 1

)
δ2

(∑
~ki⊥

)
×

∑
{li,si}

ψ
(m j)
s1 s2 s3 s4/h

({~ki⊥, xi, li})b
†

s1l1
(x1P+,~k1⊥ + x1~P⊥)d†s2l2

(x2P+,~k2⊥ + x2~P⊥)

× b†s3l3
(x3P+,~k3⊥ + x3~P⊥)d†s4l4

(x4P+,~k4⊥ + x4~P⊥) |0〉 .

(1.27)

The LFWFs in the |qq̄〉 and the |qq̄qq̄〉 sectors are written as ψ(m j)
ss̄/h(~k⊥, x) and ψ

(m j)
s1 s2 s3 s4/h

({~ki⊥, xi}),

respectively. Note that the valence part of the LFWF in this case, ψ(m j)
ss̄/h(~k⊥, x), is different from the

LFWF solved in the sole valence sector as in Eq. (1.22). The normalization relation of the physical

state as in Eq. (1.20) now contains two contributions, one from the |qq̄〉 sector and the other from the

|qq̄qq̄〉 sector. The entire LFWF on the |qq̄〉 + |qq̄qq̄〉 space is normalized as

1 =
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3 |ψ

(m j)
ss̄/h(~k⊥, x)|2

+

∫ 4∏
i=1

dxi d2ki⊥

(2π)32xi
2(2π)3δ

(∑
xi − 1

)
δ2

(∑
~ki⊥

) ∑
{li,si}

∣∣∣∣ψ(m j)
s1 s2 s3 s4/h

({~ki⊥, xi, li})
∣∣∣∣2 .

(1.28)
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1.3.2 The light-front Schrödinger equation

In light-front dynamics, the quantum state of the system is defined at fixed light-front time, x+, and its

dynamical evolution satisfies the Schrödinger equation,

i
∂

∂x+
|ψ; x+〉 =

1
2

P̂−(x+) |ψ; x+〉 . (1.29)

P− is the Hamiltonian that is conjugate to the light-front time x+. |ψ〉 is an expansion in multi-particle occu-

pation number Fock states, as we have discussed in Section 1.3.1. It could admit explicit time-dependence

in general, as is typical for a system interacting with a background field. The problem could then be solved

with given initial conditions.

|ψ; x+〉 = T+ exp[−
i
2

∫ x+

0
dz+P̂−(z+)] |ψ; 0〉 . (1.30)

This is, however, a nontrivial task, since one would need to deal with the time-ordered integral. In the

perturbation theory, one would expand the time-ordered exponential into series and only keep the first few

terms. Such treatment would become less amenable for interactions with strong fields. It is of our interest

to solve these problems in the non-perturbative regime. We decompose the time evolution operator into

many small steps in light-front time x+, and calculate the evolution of the state step by step. In doing so,

we are able to access the intermediate states during the evolution, and reveal non-perturbative effects. This

approach is known as the time-dependent Basis Light-Front Quantization (tBLFQ), and it is first brought

up in 2013 where it was applied to solve a strong background field QED problem, the non-linear Compton

scattering [37]. It is then followed by another investigation, the interaction of an electron with intense

electromagnetic fields [38]. We will discuss the general procedure of the tBLFQ approach, and make its first

application to a QCD problem, the quark-nucleus scattering, in Chapter 3.

For the investigation to the relativistic bound states, the Lagrangian does not have an explicit time

dependence, Hamiltonian eigenvalue equation reduces to,

P̂− |ψ〉 = P− |ψ〉 ,with P− =
M2 + ~P2

⊥

P+
. (1.31)

The eigenstate can be labeled with six quantum numbers, the invariant mass M, the longitudinal momen-

tum P+, the transverse momentum ~P⊥, the generalized total spin j and its longitudinal projection m j (cf.
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Eq. (1.17)), as

|ψ〉 = |ψ; M, P+, ~P⊥, j,m j〉 . (1.32)

Solving Eq. (1.31) directly produces the mass eigenvalues M and the wavefunctions of the eigenstates. This

is much easier than solving the instant form eigenvalue equation. First, the square-root operator in the instant

form, H =
√

M2 + ~P2, is replaced by a simpler dispersion relation. Second, we have P+ > 0 by its definition

P+ = P0 + P3 =

√
M2 + ~P2

⊥ + (P3)2 + P3 for massive quanta. This is crucial since it makes the light-front

vacuum trivial, for which P+
vac = 0. To form a zero-momentum state, each of the Fock particles must have

vanishing k+
a so that P+ =

∑
a k+

a → 0, the Fock space vacuum |0〉 is then an exact eigenstate of the full light-

front Hamiltonian. In contrast, in the instant form, the zero-momentum state (~P =
∑

a
~ka = ~0) consists of an

arbitrary number of Fock particles with either positive or negative components of ~ka, so the physical vacuum

is very complicated. This makes it difficult to interpret the eigensolutions of the instant form Schrödinger

equation. One might already notice that for QCD, with massless gluon quanta, it is possible to have a zero-

momentum state (P+ = 0) which is not zero-particle. This is known as the zero-mode. The curious readers

of the light-front vacuum and zero modes are encouraged to read Chapter 7 of Ref. [33].

In the Fock space representation, the Hamiltonian eigenvalue equation, Eq. (1.31), becomes a matrix

equation. A variety of methods have been developed to solve the eigenvalue equations, such as the trans-

verse lattice [39], the similarity transformations [40], the coupled integral equation approach [41, 42]. The

Discretized Light-Cone Quantization (DLCQ) uses the discretized momentum basis [43]. The discretiza-

tion is achieved by imposing periodic (usually for bosons) or anti-periodic (usually for fermions) boundary

condition in the coordinate space of a finite volume. Explicitly, −L ≤ x− ≤ L, −L⊥ ≤ x1, x2 ≤ L⊥, and

the normalization volume is Ω = 2L(2L⊥)2. There is a corresponding discrete grid in the momentum space:

p+ → nπ/L, ~p⊥ → (nxπ/L, nyπ/L). One expands the quantum fields into plane wave states e−ipx, Eqs. (1.10)

and (1.11) become

Ψαc f (x) =
∑

q

1
2L(2L⊥)22p+

[
bquα(p, λ)e−ip·x + d†qvα(p, λ)eip·x

]
, (1.33)

Aµa(x) =
∑

q

1
2L(2L⊥)22p+

[
aqεµ(p, λ)e−ip·x + a†qεµ(p, λ)∗eip·x

]
, (1.34)
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where q contains the quantum numbers of single particle state, {n, n1, n2, λ, c(color), f (flavor)}. In practical

calculations, both the Fock space and the discretized momentum basis are truncated, and the eigenvalue

equation is solved by diagonalizing the Hamiltonian matrix numerically. There have been a number of

successful applications to field theories in two or more dimensions of the DLCQ approach [44].

Basis Light-Front Quantization (BLFQ) generalizes the discretized momentum basis of the DLCQ ap-

proach to any complete and orthogonal basis [1]. To put it explicitly, if fi(p+) and g j(~p⊥) are the basis

functions, we can expand the field operators of Eqs. (1.10) and (1.11) on the basis as

bq(p+, ~p⊥) =
∑
i, j

bq̄ fi(p+)g j(~p⊥) . (1.35)

where q̄ is the shorthand for the set of quantum numbers with i and j. Optimal choices of the basis func-

tions usually preserve the symmetries of the Hamiltonian and approximate the eigenstates, so as to achieve

efficiency for numerical computations.

The BLFQ approach has been applied to solve a range of QED and QCD problems with success. The

QED applications include the positronium [45], the electron anomalous magnetic moment [46] and electron

generalized parton distribution [47]. The applications to QCD include the heavy quarkonium [48, 3], the

unequal mass heavy mesons [49] and the charged light mesons [50]. There are also other works in process,

including the heavy-light system, the light mesons, the baryons and the glueballs [51, 52]. We will discuss

the BLFQ approach in more details, with its application to the heavy quarkonium in Chapter 2.
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CHAPTER 2. BASIS LIGHT-FRONT QUANTIZATION APPROACH TO BOUND

STATES

In this chapter, we study the QCD bound-state systems in the Basis Light-Front Quantization (BLFQ)

approach. In particular, we investigate the heavy quarkonium system. We review the formalism for solving

the quarkonium system with the effective Hamiltonian approach and the application in the |qq̄〉 sector. Then

we extend the framework to the |qq̄〉 + |qq̄qq̄〉 sectors. We further study the properties of the quarkonium

through electromagnetic processes, via calculating the elastic form factors, the radiative transition form

factors and the decay widths.

2.1 The heavy quarkonium

Heavy quarkonium is the bound-state system of quark-antiquark pair, and it is often dubbed as the

“hydrogen atom” of Quantum Chromodynamics(QCD) though it has a closer kinship with positronium. It

provides an ideal testing ground for various investigations to understand QCD [53].

The quarkonium state |ψh〉 is an eigenstate of the light-front Hamiltonian, and satisfies

HLF |ψh〉 = M2
h |ψh〉 , (2.1)

where HLF = P+P−+~P2
⊥ is the light-front Hamiltonian and Mh is the mass of the bound state. Each eigenstate

|ψh〉 can be labeled with six eigenvalues, Mh, P+, ~P⊥, the total spin j and its longitudinal projection m j.

Projecting the Hamiltonian eigenvalue equation of Eq. (2.1) onto the Fock space results in an infinite

number of coupled integral eigenvalue equations. The solutions of these equations consist of the spectrum

and the corresponding wavefunctions, which could fully describe the bound state system. Fock states can

be defined in terms of the eigenstates of the free-field Hamiltonian, i.e., the light-front kinetic operator, and
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can be obtained by applying the creation operators on the Fock vacuum |0〉:

Q0 ≡ |qq̄ : k+
i ,
~ki⊥, λi〉 = b†λ1

(k1)d†λ2
(k2) |0〉

Q1 ≡ |qq̄g : k+
i ,
~ki⊥, λi〉 = b†λ1

(k1)d†λ2
(k2)a†λ3

(k3) |0〉

Q2 ≡ |qq̄qq̄ : k+
i ,
~ki⊥, λi〉 = b†λ1

(k1)d†λ2
(k2)b†λ3

(k3)d†λ4
(k4) |0〉

. . .

(2.2)

For convenience, we have labeled the various Fock states with index n = 1, 2, . . .. Each Fock state Qn is an

eigenstate of P+ and ~P⊥, satisfying P+ =
∑

i k+
i and ~P⊥ =

∑
i
~k⊥.

In practical calculations, only a finite number of the leading Fock sectors are considered. The eigenvalue

equation, Eq. (2.1), can be written explicitly on the finite Fock basis truncated as,

N∑
j=1

Hi j |ψ j〉 = M2
h |ψi〉 for all i = 1, 2, . . . ,N . (2.3)

We define the block matrices Hi j ≡ QiHLF Q j, and the projected eigenstates |ψi〉 ≡ Qi |ψh〉. One could

then proceed to solve the coupled matrix equations in Eq. (2.3). The resulting eigenstate can be written as

|ψh〉 =
∑N

n=1

∫
d[ki]Qn |ψn〉.

Even with a finite truncation scheme, solving the Hamiltonian matrix becomes a major challenge in

numerical calculations with increasing number of Fock sectors. Could we include the physics from higher

Fock sectors while carrying out the calculation at a smaller feasible Fock space? A well known and widely

used method is the effective interactions. In field theories, it was first introduced by I.Tamm [41] and redis-

covered by S.M.Dancoff [42] to describe the two nucleon forces. It reduces and solves the field equations

according to the number of Fock particles.

Although the Tamm-Dancoff approach was applied originally in the instant form, we can derive it anal-

ogously in the front form. The Fock space could be arbitrarily divided into two parts, namely the P-space

and the Q-space. By choosing a specific partition, we wish to formulate an effective potential acting only in

the P-space but including the effects generated by the Q-space. The Hamiltonian matrix equation, Eq. (2.3),

can then be rewritten as a coupled matrix equation involving the block matrices Hαβ ≡ 〈α|HLF |β〉 and the
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projected eigenfunctions |ψh〉α = 〈α|ψh〉 with (α, β = P,Q):

HPP |ψ〉P + HPQ |ψ〉Q = ω |ψ〉P , (2.4a)

HQP |ψ〉P + HQQ |ψ〉Q = ω |ψ〉Q . (2.4b)

The mass eigenvalue is unknown at this point, and it is written as ω = M2
h in the above equations. One can

express the Q-space wavefunction |ψh〉Q in terms of the P-space wavefunction |ψh〉P from Eq. (2.4b) as,

|ψ〉Q =
1

ω − HQQ
HQP |ψ〉P . (2.5)

Plugging it into Eq. (2.4a), we arrive at an eigenvalue equation with an “effective Hamiltonian” acting only

in the P-space:

Heff |ψ〉P = ω |ψ〉P , (2.6)

with

Heff = HPP + HPQ
1

ω − HQQ
HQP . (2.7)

We can see that the effective interaction contains two parts: the original block matrix HPP, and a contribution

where the system is scattered virtually into the Q-space and then scattered back to the P-space.

One key problem now is to compute the energy denominator (ω − HQQ)−1, since the value of ω is

unknown before solving the equations. One could start with some fixed value of ω as the “starting point

energy” and calculate M2
h(ω) from the eigenvalue equation. The true eigenvalues are determined by varying

ω until ω = M2
h(ω) [54, 55]. This procedure, involving inverting a Q-space matrix, however, does not seem

to reduce the numerical work of diagonalizing the (P+Q)-space matrix directly. An alternative way is to

substitute the eigenvalue ω by T ∗, the average kinetic energy of the initial and final P-space states [56]. The

idea is to reduce the matrix ω − HQQ to its dominant term as a c-number. The Q-space matrix HQQ splits

into a diagonal kinetic term TQQ and an off-diagonal interaction term UQQ. The inverse matrix could then

be written as

1
ω − HQQ

=
1

T ∗ − TQQ − δU(ω)
, δU(ω) = ω − T ∗ − UQQ . (2.8)

In the case of a sufficiently small δU(ω), the energy denominator can be approximated by the kinetic energy

T ∗ − TQQ, which no longer depends on the energy eigenvalue.
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2.1.1 Heavy quarkonium in the valence Fock sector

In solving bound state systems with effective Hamiltonian approaches, the simplest P-space one can

choose is the valence Fock sector. For heavy quarkonium, constituent quark models have shown reasonable

first approximations in non-relativistic potential models [57, 58]. In the following, we illustrate the formu-

lation of the effective Hamiltonian in the valence Fock sector by choosing Q0 = |qq̄〉 as the P-space and

Q1 = |qq̄g〉 as the Q-space. The eigenvalue equation now reads (signifying the Qi by its index ”i” in the

following),

(
H00 + H01

1
ω − H11

H10

)
ψ0 = ωψ0 . (2.9)

We can write the Hamiltonian as a summation of the kinetic energy and the interaction operator, H = T + U.

The diagonal block Hii contains Tii and Uii, and the off-diagonal block is Hi j = Ui j, (i , j). The interaction

matrix U is illustrated in Table 2.1.

Table 2.1 The interaction matrix U for a meson in the Fock space |qq̄〉+ |qq̄g〉. The matrix elements
are represented by diagrams. For each diagram where the gluon couples to the quark,
there also exists a corresponding diagram with the gluon coupling to the antiquark. Dia-
grams in the red frames are excluded by gauge cutoff, see details in the text.

Qn

sector
Q0 = |qq̄〉 Q1 = |qq̄g〉

Q0 = 〈qq̄|

Q1 = 〈qq̄g|
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We first focus on the denominator of the second term in Eq. (2.9). To maintain the gauge invariance in the

truncated Fock space, we implement the “gauge cutoff” formulated by Tang, Brodsky, and Pauli [59], that

is, the instantaneous parton graph is only retained if the corresponding propagating parton graph contributes

in the truncated theory. As a consequence, some instantaneous interactions in U00 and U11 are excluded.

For example, the left diagram in the second row of U11 should not be considered since the corresponding

|qq̄gg〉 sector is absent in the model. Those excluded terms are marked with red frames in Table 2.1. The

second diagram in U00 also vanishes for another reason: zero for the color factor. We further adopt the

approximation δU(ω) ≈ 0 in Eq. (2.8), i.e. U11 → 0. In principle, this approximation can be improved

systematically by performing an expansion in δU(ω) and retaining terms order-by-order in that expansion.

The energy denominator now reduces to T ∗ − T11.

k, s, c k′, s′, c′

k̄, s̄, c̄ k̄′, s̄′, c̄′

k, s, c k′, s′, c′

k̄, s̄, c̄ k̄′, s̄′, c̄′

k, s, c k′, s′, c′

k̄, s̄, c̄ k̄′, s̄′, c̄′

k, s, c k′, s′, c′

k̄, s̄, c̄ k̄′, s̄′, c̄′

Figure 2.1 Iterated interactions generated in the two-body effective interaction. The top two panels
are the gluon-exchange diagrams. The bottom two panels are the fermion-self-energy
contributions. Each fermion lines are labled by its momentum (k), spin (s) and color
(c).

The first term in Eq. (2.9), H00, contains an instantaneous gluon-exchange interaction, U00. The second

term, by stitching U01 and U10, generates both fermion-self-energy loops and exchanges of gluons between

the quark and the antiquark as shown in Fig. 2.1. We simplify the interaction by neglecting the self-energy

terms in these investigations and we will adopt the strategy of using quark masses as adjustable parame-

ters (called ”constituent quarks”). The remaining one-gluon exchange can be combined together with the

instantaneous contributions from U00 into one term, namely VOGE. In the BLFQ formalism of ref. [3], the
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one-gluon exchange term reads,

VOGE = −
CF4παs(q2)

q2 ūs′(k′)γµus(k)v̄s̄(k̄)γµvs̄′(k̄′) . (2.10)

The energy denominator can now be interpreted as the average 4-momentum squared carried by the ex-

changed gluon, q2 = −(1/2)(k′−k)2−(1/2)(k̄′−k̄)2. CF is the color factor of the one-gluon exchange diagram,

and its calculation follows the corresponding QCD vertices [60]. Here the initial and final quark-antiquark

pairs are both in the color singlet configuration, thereby CF = 1/4(1/
√

3c′†Tαc)(1/
√

3c†Tαc′) = 4/3, where

Tα (α = 1, . . . , 8) are the Gell-Mann matrices and c, c′ = red, blue, green are the color vectors, their expres-

sions can be found in Appendix A.7. The overall“-” sign in Eq. (2.10) results from the anti-communitation

relation of the fermion fields in calculating the vertices, in analogy to the Coulomb potential between two

opposite charges in electrodynamics. This term implements the short-distance physics between the quark

and the antiquark, and determines the spin structure of the mesons. The eigenvalue equation of Eq. (2.9)

then reduces to

(T00 + VOGE)ψ0 = ω0ψ0 . (2.11)

The one-gluon exchange interaction VOGE is identical to the one-photon exchange in quantum electrodynam-

ics (QED), except for the color factor. The eigenvalue equation of Eq. (2.11) with the one-photon exchange

has been applied to the positronium system in the basis function approach by Ref. [45]. In the relative coor-

dinate presentation, the kinetic term can be written as T00 = (~k2
⊥ + m2

q)/x + (~k2
⊥ + m2

q̄)/(1 − x). x = p+
q /P

+ is

the longitudinal momentum fraction of the quark and ~k⊥ = ~kq⊥ − x~P⊥ is the relative transverse momentum.

One can imagine that expanding the Q-space directly would introduce more interaction terms. Apart

from the standard way of including interactions from a finite Q-space, phenomenological approaches also

bring valuable insights. Light-front holography constructs an effective Hamiltonian based on inspirations

from string theory. It addresses confinement, an essential feature of QCD, by holographic mapping gravity

in a higher-dimensional anti-de Sitter(AdS) space to light-front dynamics [61]. In the soft-wall model, a

2-dimensional soft-wall confinement originates from the gravitational background field [62]. Y. Li et al.

further improved the confinement by including the longitudinal degree of freedom [48, 3],

Vconfinement = κ4x(1 − x)r2
⊥ −

κ4

(mq + mq̄)2 ∂x(x(1 − x)∂x) . (2.12)
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κ is the strength of the confinement, r⊥ = |~rq⊥ − ~rq̄⊥| is the transverse separation of the partons. This phe-

nomenological confinement takes into account the long-distance physics, and provides another approxima-

tion to QCD. The eigenvalue equation provides a more extensive model of QCD by absorbing the confining

potential,

(T00 + VOGE + Vconfinement)ψ0 = ωψ0 . (2.13)

Conventionally, all the contributions in the Hamiltonian excluding the kinetic energy are combined and

the resulting interaction is referred to as the effective interaction, Veff = VOGE + Vconfinement. The mass

spectrum and LFWFs are the direct solutions of the eigenvalue equation, and could be obtained as in BLFQ

by diagonalizing the Hamiltonian in a basis representation.

2.1.1.1 Basis Representation of |qq̄〉 sector

Solving the eigenvalue equation of Eq. (2.13) following BLFQ in a basis function approach is advanta-

geous. In solving the heavy quarkonium system, the work in Ref. [3] chooses the eigenfunctions of part of

the Hamiltonian, T00 + Vconfinement, as the basis functions, which largely reduces the numerical efforts. The

basis consists of the 2D harmonic oscillator (HO) function φnm in the transverse direction, and the modified

Jacobi polynomial χl in the longitudinal direction. The transverse basis function is

φnm(~k⊥) = κ−1

√
4πn!

(n + |m|)!

(k⊥
κ

)|m|
exp(−(k⊥)2/(2κ2))L|m|n ((k⊥)2/κ2) exp(imθ) , (2.14)

where k⊥ = |~k⊥| and θ = arg k⊥. n = 0, 1, 2, . . . is the principal number and m = 0,±1,±2, . . . is the orbital

number. Its orthonormality relation is∫
d2~k⊥
(2π)2φ

∗
n′m′(~k⊥)φnm(~k⊥) = δnn′δmm′ . (2.15)

The longitudinal basis function is

χl(x) =
√

4π(2l + α + β + 1)

√
Γ(l + 1)Γ(l + α + β + 1)
Γ(l + α + 1)Γ(l + β + 1)

xβ/2(1 − x)α/2P(α,β)
l (2x − 1) , (2.16)

where P(α,β)
l is the Jacobi polynomial. Its orthonormality relation is

1
4π

∫ 1

0
dxχl(x)χl′(x) = δll′ . (2.17)
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Each basis state is thus characterized by five quantum numbers {n,m, l, s, s̄}, where s(s̄) is the spin of

the quark(antiquark). The basis is constructed to conserve the magnetic projection of the total angular

momentum: m j = m + s + s̄. m is interpreted as the orbital angular momentum projection. The basis space

is truncated by their reference energies in dimensionless units:

2n + |m| + 1 ≤ Nmax, 0 ≤ l ≤ Lmax. (2.18)

Consequently, the Nmax-truncation provides a natural pair of UV and IR cutoffs: Λ⊥,uv ' κ
√

Nmax, λ⊥,ir '

κ/
√

Nmax. Lmax represents the resolution of the basis in the longitudinal direction ∆x ≈ L−1
max, which also

provides a pair of UV and IR cutoffs Λz,uv ' mh
√

Lmax, λz,ir ' mh/
√

Lmax, and mh is the mass eigenvalue of

the hadron.

The light-front wavefunction is an expansion on this basis function representation:

ψ
(m j)
ss̄/h(~k⊥, x) =

∑
n,m,l

ψh(n,m, l, s, s̄) φnm(~k⊥/
√

x(1 − x))χl(x). (2.19)

ψh(n,m, l, s, s̄) is the coefficient of the corresponding basis {n,m, l, s, s̄}, and is obtained from diagonalizing

the Hamiltonian.

The spectrum obtained from Eq. (2.13) in Ref. [3] agrees with the PDG data with an r.m.s mass deviation

of 30 to 40 MeV for states below the open flavor thresholds. The light-front wavefunctions have been used

to calculate several observables and are in reasonable agreement with experiments and other theoretical

approaches [63, 64, 65, 66, 67, 9, 10]. We will discuss its applications in determining the elastic form

factors and the transition form factors in the later sections.

2.1.2 Extension to higher Fock sectors

Solving the heavy quarkonium system in a larger Fock space could bring new aspects and richer inter-

pretations of non-perturbative dynamics. In the last section, we see that the one-gluon exchange effective

potential VOGE provides an appealing first approximation to the role of quark-gluon coupling in QCD. In

this section, we extend the P-space to |qq̄〉 + |qq̄qq̄〉 and keep the Q-space as |qq̄g〉. This extension on the

Fock space is consistent with the holographic QCD, where the Fock states of hadrons can have any number

of extra qq̄ pairs created by the confining potential but no constituent dynamical gluons [68]. The eigenvalue
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equation in the extended P-space now reads (where the subscript “2” represents the space of the two-quark-

two-antiquark states),

(
H00 + H01

1
ω − H11

H10

)
ψ0 +

(
H01

1
ω − H11

H12 + H02

)
ψ2 = ωψ0 , (2.20a)(

H20 + H21
1

ω − H11
H10

)
ψ0 +

(
H21

1
ω − H11

H12 + H22

)
ψ2 = ωψ2 . (2.20b)

The interaction matrix U is illustrated in Table 2.2. We adopt the same gauge cutoff as in last section, and

drop U11 in the energy denominator as a simplification and an approximation.

Table 2.2 The interaction matrix U for the quarkonium in the Fock space |qq̄〉+ |qq̄qq̄〉+ |qq̄g〉. The
matrix elements are represented by diagrams. For each diagram where the gluon couples
to the quark, there is a corresponding diagram with the gluon coupling to the antiquark.
The diagram in the red frame is excluded by gauge cutoff. Diagrams in U00 and U11 that
are excluded by gauge cutoff are not shown here, see Table 2.1 for reference.

Qn

sector
Q0 = |qq̄〉 Q2 = |qq̄qq̄〉 Q1 = |qq̄g〉

Q0 = 〈qq̄|

Q2 = 〈qq̄qq̄|

Q1 = 〈qq̄g|

Let us first analyze the block matrices within Q0 and Q2 respectively. The first term in Eq. (2.20a) is

exactly the same as that in the valence eigenvalue equation, Eq. (2.9). There we isolate the kinetic energy and

the one-gluon exchange contribution, and introduce a confining potential. We now generalize this procedure

to Q2 sector through the second term in Eq. (2.20b). The Hamiltonian in this term contains the kinetic energy

T22 and an internal-annihilation-creation term, VIAC ≡ U22 + H21H12/(T ∗ − T11). U22 is the instantaneous

gluon contribution and is illustrated in Table. 2.2. The iterated interaction generates the non-instantaneous

contribution, shown in Fig. 2.2.
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k1, s1, c1

k2, s2, c2
k3, s3, c3
k4, s4, c4

k′1, s
′
1, c

′
1

k′2, s
′
2, c

′
2

k′3, s
′
3, c

′
3

k′4, s
′
4, c

′
4

Figure 2.2 The internal-annihilation-creation interaction generated by stitching U21 and U12. This
term and U22 together form the full internal-annihilation-creation term VIAC. Each
fermion lines are labeled by its momentum (k), spin (s) and color (c).

We can write out VIAC explicitly in analogy to VOGE,

VIAC =
CF224παs(q2)

q2 ūs′1(k′1)γµvs′2(k′2)v̄s2(k2)γµus1(k) . (2.21)

The energy denominator, q2 = −(1/2)(k1 + k2)2 − (1/2)(k′1 + k′2)2, is the average 4-momentum squared

carried by the intermediate gluon. CF22 = 1/4(c′†1Tαc′2)(c†2Tαc1)(c′†3c3)(c†4c′4) is the color factor. In

this term, both the initial and the final qq̄qq̄-states are in the color singlet configurations. If c1 and c2

form a color singlet, CF22 = 1/4(1/3Tα
ii )(1/3Tα

j j) = 0; if c1 and c2 are in the color octet state, CF22 =

1/4(1/(2
√

2)Tα
i j)(1/(2

√
2)Tα

ji) = 1/2. i, j = 1, 2, 3 are dummy indices, see Appendix A.7 for the matrix

format of Tα.

Now let us study the off-diagonal blocks in Eq. (2.20), which connects the two Fock sectors in the

P-space, Q0 and Q2. Each of the two blocks also consists of an instantaneous contribution U02, and a non-

instantaneous contribution. The later is illustrated in Fig. 2.3. We combine the two contributions into one

term, and name it as the one-gluon-binding interaction, VOGB.

VOGB = −
CF124παs(q2)

q2 ūs1(k1)γµus(k)ūs2(k2)γµvs3(k3)

+
CF124παs(q2)

q2 v̄s̄(k̄)γµvs4(k4)ūs2(k2)γµvs3(k3) .
(2.22)

The color factor is CF12 = 1/4(c†1Tαc)(c†2Tαc3)(c†4c̄) according to the notations in the first diagram of

Fig. 2.3. The second diagram of Fig. 2.3 has the same color factor. From earlier discussion, we know

that if c2 and c3 form a color singlet, the color factor would be 0. Therefore, in order to get a non-vanishing

contribution, we must have c2 = c, and let c1 and c3 form a color singlet. The resulting color factor is

CF12 = 1/4(1/3Tα
ji)(1/

√
3Tα

i j) = 4
√

3/9.



www.manaraa.com

26

k, s, c

k̄, s̄, c̄

k1, s1, c1
k2, s2, c2

k3, s3, c3
k4, s4, c4

k, s, c

k̄, s̄, c̄

k1, s1, c1
k2, s2, c2

k3, s3, c3
k4, s4, c4

Figure 2.3 Iterated interactions generated by stitching U01 and U12. Each fermion lines are labeled
by its momentum (k), spin (s) and color (c).

We include the confining potential and extend it to the Q2 sector and write the eigenvalue equation,

Eq. (2.20) as,

(T00 + VOGE + Vconfinement)ψ0 + V∗OGBψ2 = ωψ0 , (2.23a)

VOGBψ0 + (T22 + VIAC + Vconfinement,2)ψ2 = ωψ2 . (2.23b)

In the single particle representation (as opposed to the relative motion representation discussed above for

the |qq̄〉 sector), the kinetic term can be written as T22 =
∑4

i=1(~k2
i⊥ + m2

q)/xi. Vconfinement,2 is the confining

potential in the Q2 sector,

Vconfinement,2 = κ4
∑

i, j(i< j)

xix jr2
i j,⊥ −

κ4

(2m f )2

∑
i, j(i< j)

∂xi(xix j∂x j) . (2.24)

ri j,⊥ = |~ri,⊥−~r j,⊥| is the transverse separation between the i-th and j-th partons. xi = p+
i /P

+ is the longitudinal

momentum fraction of the i-th parton. In Eq. (2.24), we did not impose any dependence on the color

structure of the Fock state as in the Q0 sector of Eq. (2.12). One other possible treatment to take the same

color factor as in the VIAC term, CF22. Solving the coupled equations(Eq. (2.23)) directly would lead to the

mass spectrum and light-front wavefunctions in the Q0 + Q2 Fock space.

For heavy quarkonium system, the Q0 sector is expected to provide the dominant contribution to the

eigenstates so we consider using perturbation theory to find an approximation to the exact solutions. The

unperturbed Hamiltonian is that in the P = Q0 and Q = Q1 space, and the unperturbed wavefunction is

ψ0 obtained from Eq. (2.13). The perturbation Hamiltonian is the VOGB term, and it can be recognized by

comparing the unperturbed eigenvalue equation, Eq. (2.13) and the perturbed one, Eq. (2.23a). We can now

solve ψ2 by plugging the unperturbed wavefunction ψ0 into Eq. (2.23b). We could thereby obtain the full
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P(= Q0 + Q2)-space wavefunction according to the normalization relation, |ψ0|
2 + |ψ2|

2 = 1. The perturbed

mass eigenvalue is obtained as M′h
2 = ω0|ψ0|

2 + ω2|ψ2|
2.

An even simpler treatment is to omit the interaction within the Q2 sector and neglect the perturbation

on the mass eigenvalue. Then the Q2 wavefunction could be solved from Eq. (2.23b) directly as ψ2 =

VOGBψ0/(ω0 − T22). One could then renormalize the total light-front wavefunction to unity.

2.1.2.1 Basis representation of |qq̄qq̄〉 sector

We consider two identical quarks and two identical antiquarks in the |qq̄qq̄〉 sector. We know that the

total wavefunction in the |qq̄qq̄〉 sector, consisting of the space, spin and color parts as ψ = ψspatialψspinψcolor,

should be antisymmetric under the exchange of identical fermions. For convenience, we label the two quarks

as q1, q3 and the two antiquarks as q̄2, q̄4.

In the color space, there are two possible color singlet states. Following the notation in Ref. [69], these

two states read,

ψA
color = (q1q3)3̄ ⊗ (q̄2q̄4)3 =

1
√

12
εαβγεαλσq1,βq3,γq̄λ2q̄σ4 ,

ψS
color = (q1q3)6 ⊗ (q̄2q̄4)6̄ =

1
√

6
dαβγdαλσq1,βq3,γq̄λ2q̄σ4 ,

(2.25)

where dαβγ and dαλσ are

d111 = d111 = d222 = d222 = d333 = d333 = 1,

d412 = d412 = d421 = d421 = d523 = d523 = d532 = d532 = d613 = d613 = d631 = d631 =
1
√

2
.

(2.26)

ψA
color(ψ

S
color) is antisymmetric(symmetric) under transposition of q1 and q3 or q̄2 and q̄4. These two color

singlet states are orthonormal by means of the irreducible representation of color SU(3).

We formulate the space-spin basis states using the single particle basis representation. Here we fol-

low the basis constructed in Ref. [1] where the basis space consists of the 2D harmonic oscillator for the

transverse modes and a discretized momentum space basis for the longitudinal modes. The 2D harmonic

oscillator states are characterized by their principal quantum number n = 0, 1, 2, . . . and orbital quantum

number m = 0,±1,±2, . . .. The longitudinal modes are defined on −L ≤ x− ≤ L with periodic boundary
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conditions. The longitudinal momentum faction reads x = k/K with k = 1, 2, . . . ,K, where K is the to-

tal longitudinal momentum and we neglect zero modes. As such, we can build the space-spin basis with

quantum numbers, {α1, α2, α3, α4}, αi = {ni,mi, ki, si}, where i = 1, 2, 3, 4 stands for the four partons. The

chosen symmetries and cutoffs are expressed in terms of the sums over those quantum numbers, Mt =
∑

i mi,

S =
∑

i S i,
∑

i ki = K and
∑

i(2ni + |mi|+ 1) ≤ Nmax. The magnetic projection of the total angular momentum

is m j = Mt + S . We only consider distinct states. For example, at Nmax = K = 4, there is only one distinct

space-spin state at m j = 0, and that is {α1 = {0, 0, 1,−1/2}, α2 = {0, 0, 1, 1/2}, α3 = {0, 0, 1,−1/2}, α4 =

{0, 0, 1, 1/2}}. The number of distinct basis states for different K = Nmax cases are shown in Table. 2.3.

Table 2.3 Number of distinct space-spin basis states in the |qq̄qq̄〉 sector at different K = Nmax

values. In the first case, Mt and S are conserved separately, as quoted from Ref. [1]. In
the second case, the magnetic projection for the total angular momentum m j = Mt + S
is conserved, which we will use in constructing the basis.

K = Nmax 4 6 8 10 12
Mt = 0, S = 0 [1] 1 236 5961 64240 427730

m j = 0 1 336 10295 121808 860470

We then construct (anti)symmetric basis states using those distinct states as,

[ψspatialψspin]S =
1
2

({α1, α2, α3, α4} + {α3, α2, α1, α4} + {α1, α4, α3, α2} + {α3, α4, α1, α2}) ,

[ψspatialψspin]A =
1
2

({α1, α2, α3, α4} − {α3, α2, α1, α4} − {α1, α4, α3, α2} + {α3, α4, α1, α2}) ,
(2.27)

where α1 , α3 and α2 , α4. It is then straightforward to construct the basis states in the full space-spin-color

space as [ψspatialψspin]SψA
color and [ψspatialψspin]AψS

color.

An alternative way of constructing the color states is to treat the qq̄qq̄ state as two diquarks. This is

particularly useful in considering the quarkonium decaying into two color singlets, such as the radiative

decay J/ψ→ ηcγ. In this bases, there are two color singlet states,

ψ1
color = (q1q̄2)1 ⊗ (q3q̄4)1 =

1
3

qi
1q̄i

2q j
3q̄ j

4 ,

ψ8
color = (q1q̄2)8 ⊗ (q3q̄4)8 =

1

2
√

2
(qi

1q̄ j
2 −

1
3
δi, jqk

1q̄k
2)(q j

3q̄i
4 −

1
3
δi, jqk

3q̄k
4) ,

(2.28)



www.manaraa.com

29

where i, j, k = 1, 2, 3 are the color indices of the quark and the antiquark. There is a one-to-one correspon-

dence between the two bases in Eqs. (2.25) and (2.28),

ψ1
color =

1
√

3
ψA

color +

√
2
3
ψS

color ,

ψ8
color = −

√
2
3
ψA

color +
1
√

3
ψS

color .

(2.29)

Having defined the BLFQ framework for expanding the Fock space of the mesons, we note that the path is

prepared for detailed calculations to follow which is outside the scope of the present work. We return to treat

observables calculated with the light-front wavefunctions evaluated in the quark-antiquark Fock space.

2.2 The elastic form factor

In quantum field theory, the elastic electromagnetic form factors characterize the structure of a bound

state system, which generalize the multipole expansion of the charge and current densities in the nonrela-

tivistic quantum mechanics. The physical process that determines the elastic form factors is ψh(P)+γ(∗)(q =

P′ − P) → ψh(P′). The form factors are defined as the Lorentz invariants arising in the Lorentz structure

decomposition of the hadron matrix element 〈ψh(P′)|Jµ(0)|ψh(P)〉. For spin-j particles, assuming charge con-

jugation, parity and time reversal symmetries, there are 2 j + 1 independent Lorentz invariant form factors.

The derivation of Lorentz covariant decomposition of hadron matrix elements can be found in Appendix D.

In calculating the form factors from the hadron matrix elements, one has the freedom of choosing current

components and reference frames. Though in principle, those different choices should lead to the same

result, different results could arise in practical calculations in a finite Fock space due to the violation of

Lorentz symmetry. Here we derive the elastic form factors in light-front coordinates with different current

components, and without specifying a reference frame at the outset. For this purpose, we first define a

parameter space of the reference frame. Our discussions of the elastic form factor and the transition form

factor in the next section will also follow this definition of frames.
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2.2.1 Frames and kinematics

Considering the process ψA(P′) → ψB(P) + X(q = P′ − P) or ψB(P) + X(q = P′ − P) → ψA(P′),

the Lorentz invariant momentum transfer q2 can be written as a function of two boost invariants [65, 10]

according to the four-momentum conservation q2 = (P′ − P)2,

q2 = zm2
A −

z
1 − z

m2
B −

1
1 − z

~∆2
⊥ . (2.30)

where,

z ≡ (P′+ − P+)/P′+, ~∆⊥ ≡ ~q⊥ − z~P′⊥ .

Both z and ~∆⊥ are invariant under the transverse Lorentz boost specified by the velocity vector ~β⊥,

v+ → v+, ~v⊥ → ~v⊥ + v+~β⊥ . (2.31)

z can be interpreted as the relative momentum transfer in the longitudinal direction, and ~∆⊥ describes the

momentum transfer in the transverse direction. Note that z is restricted to 0 ≤ z < 1 by definition. For each

possible value of q2, the values of the pair (z, ~∆⊥) are not unique, and those different choices correspond

to different reference frames (up to longitudinal and transverse light-front boost transformations). Fig. 2.4

should help visualize the functional form of q2(z, ~∆⊥). Since q2 is relevant to the magnitude of ~∆⊥ but not

its angle, we plot it in the arg ~∆⊥ = 0, π plane. Form factors evaluated at different (z, ~∆⊥) but at the same q2

could reveal the frame dependence. In particular, we introduce two special frames for detailed consideration.

• Drell-Yan frame (z = 0) : q+ = 0, ~∆⊥ = ~q⊥ and q2 = −~∆2
⊥. This frame is shown as a single thick

solid line in each panel of Fig. 2.4. The Drell-Yan frame is conventionally used together with the plus

current J+ to calculate the electromagnetic form factors. This choice, on the one hand, avoids spurious

effects related to the orientation of the null hyperplane where the light-front wavefunction is defined

and, on the other hand, it suppresses the contributions from the often-neglected pair creation process,

at least for pseudoscalar mesons [70, 71, 72, 73, 74, 75]. For the transition form factor, this is only

true if zero-mode contributions are neglected. The transition form factor obtained in the Drell-Yan

frame is significantly restricted in the space-like region, i.e. q2 ≤ 0. Although one could analytically

continuate the form factor to the time-like region by changing ~q⊥ to i~q⊥ [76, 77, 78], we elect to

calculate transition form factors directly from wavefunctions.
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(a) Regional plot of q2(∆⊥, z) (b) 3D plot of q2(∆⊥, z)

Figure 2.4 Visualization of the Lorentz invariant momentum transfer squared q2 as a function of z
and ~∆⊥ at arg ~∆⊥ = 0, π. (a): regional plot of q2. The time-like region (q2 > 0) is the or-
ange oval shape, bounded by ∆node = (m2

A−m2
B)/2mA and znode = 1−m2

B/m
2
A. The space–

like region (q2 < 0) is in light gray. Contour lines of q2 are indicated with thin dashed
curves. The maximal value q2

max = (mA − mB)2 occurs at (zturn = 1 − mB/mA,∆⊥ = 0).
(b): 3D plot of q2 showing a convex shape in the (z,∆⊥) representation. The blue flat
plane is the reference plane of q2 = 0. In each figure, the Drell-Yan frame is shown as a
thick solid line, and the longitudinal I and II frames are shown as thick dotted and thick
dashed lines respectively. (Figure adapted from Ref. [10].)
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• longitudinal frame (~∆⊥ = 0): q2 = zm2
A − zm2

B/(1 − z). Note that we use the same definition for the

longitudinal frame as in Ref. [65, 10], which is different from those in the literature where ~q⊥ = 0 is

called the longitudinal frame [79, 80, 72, 78]. In this frame, we have access to the kinematic region

up to q2
max = (mA −mB)2, the point where the final meson does not recoil. This maximal value occurs

at z = 1 − mB/mA ≡ zturn. For a given q2, there are two solutions for z, corresponding to either the

positive or the negative recoil direction of the final meson relative to the initial meson, namely,

– longitudinal-I: z =

[
m2

A − m2
B + q2 +

√
(m2

A − m2
B + q2)2 − 4m2

Aq2
]
/(2m2

A). zturn ≤ z < 1. This

branch joins the second branch at q2 = q2
max with z = zturn, ~∆⊥ = 0. The time-like region is

accessed at zturn ≤ z < znode, and the space-like region is at znode ≤ z < 1, where znode ≡

1 − m2
B/m

2
A. The longitudinal-I frame is shown as thick dotted lines in Fig. 2.4.

– longitudinal-II: z =

[
m2

A − m2
B + q2 −

√
(m2

A − m2
B + q2)2 − 4m2

Aq2
]
/(2m2

A). 0 ≤ z ≤ zturn. This

second branch only exists in the time-like region, and it joins the Drell-Yan frame at q2 = 0 with

z = 0, ~∆⊥ = 0. The longitudinal-II frame is shown as thick dashed lines in Fig. 2.4.

2.2.2 The hadron matrix element

The electromagnetic transition between two hadron states ψA and ψB is governed by the matrix element

〈ψB(P, j,m j)| Jµ(x) |ψA(P′, j′,m′j)〉. The elastic process is a special case where ψA = ψB. In this section, we

derive the light-front wavefunction representation of the hadron matrix element, which we will use later in

calculating the elastic form factor and the transition form factor.

The electromagnetic (EM) current operator is defined as Jµ = Ψ̄γµΨ. In the light-front representation,

Jµ(x) =
∑
λ1,λ2

∫ d2 p1⊥ dp+
1

(2π)32p+
1

∫ d2 p2⊥ dp+
2

(2π)32p+
2

[
b†λ2c2

(p2)ūλ2(p2)eip2·x + dλ2c2(p2)v̄λ2(p2)e−ip2·x
]

γµ
[
bλ1c1(p1)uλ1(p1)e−ip1·x + d†λ1c1

(p1)vλ1(p1)eip1·x
]
.

(2.32)
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By spacetime translation invariance,

〈ψB(P, j,m j)|Jµ(x) |ψA(P′, j′,m′j)〉

= 〈ψB(P′, j′,m′j)| Ψ̄(x)γµΨ(x) |ψA(P, j,m j)〉

= 〈ψB(P, j,m j)| e−ip̂xΨ̄(0)eip̂xγµe−ip̂xΨ(0)eip̂x |ψA(P′, j′,m′j)〉

= 〈ψB(P, j,m j)| e−iPxΨ̄(0)γµΨ(0)eiP′x |ψA(P′, j′,m′j)〉

= 〈ψB(P, j,m j)| Jµ(0) |ψA(P′, j′,m′j)〉 e
i(P′−P)x .

(2.33)

The argument x only results in an overall phase factor, so in the literature one usually take Jµ(0) in calculating

the matrix element.

We have shown in Section 1.3.1 that the meson state vector |ψh(P, j,m j)〉 can be expanded in the light-

front Fock space. The coefficients of the Fock expansion are the complete set of n-particle light-front

wavefunctions, {ψ(m j)
n/h (xi,~ki⊥, si)}. xi ≡ κ

+
i /P

+ is the longitudinal momentum fraction of the i-th parton, and

~ki⊥ ≡ ~κi⊥ − x~P⊥ is the relative transverse momenta, with κi being the momenta of the corresponding parton.

s is the spin of the parton. The electromagnetic current matrix element is in general given by the sum of the

diagonal n→ n and off-diagonal n + 2→ n transitions, as shown in Fig. 2.5.

〈ψB| Jµ |ψA〉 = 〈ψB| Jµ |ψA〉n→n + 〈ψB| Jµ |ψA〉n+2→n . (2.34)

In the former case, the external photon is coupled to a quark or an antiquark. In the latter case, a quark-

antiquark pair is annihilated into the external photon.

2.2.2.1 n→ n transition

For the n→ n term, as in Fig. 2.5(a), the external photon is coupled to a quark or an antiquark, thus the

electromagnetic current matrix element takes the form

〈ψB(P, j,m j)| Jµ(0) |ψA(P′, j′,m′j)〉n→n
=

∑
n

n∏
i=1

∑
s′i ,s1,li

∫ 1

z

dx′1
2x′1

∫ 1

0

dx′i(i,1)

2x′i

∫ d2k′i⊥
(2π)3 2(2π)3

× δ

 n∑
i=1

x′i − 1

 δ(2)

 n∑
i=1

~k′i⊥

ψ(m j)∗
n/B ({xi,~ki⊥, si, li}) jµs1,s′1

ψ
(m′j)
n/A ({x′i ,~k

′
i⊥, s

′
i , li}) ,

(2.35)
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ψA ψB

(a) n→ n transition

ψA ψB

(b) n + 2→ n transition

Figure 2.5 Light-front wavefunction representation of the hadron matrix element. The double-lines
represents the hadrons. The solid lines represent the partons. The wavy lines represent
the external photon. The shaded areas represent the light-front wavefunctions. These
diagrams are ordered by light-front time x+, which flows from left to right. In (a), the
n→ n transition, parton number is conserved, whereas in (b), the n + 2→ n transition,
parton number is reduced by 2 due to pair annihilation. (Figure adapted from Ref. [10].)

where the EM current jµs1,s′1
= ūs′1(κ′1)γµus1(κ1) if the struck parton is a quark, and jµs1,s′1

= v̄s1(κ1)γµvs′1(κ′1) if

the struck parton is an antiquark. We will restore the quark charge in the current when calculating observ-

ables. li is the color index of the i-th parton. The relative coordinates and constraint conditions of partons

are 
x′1 = x1 + z(1 − x1),~k′1⊥ = ~k1⊥ + (1 − x1)~∆⊥, l1 = l′1, for the struck parton (i = 1)

x′i = xi(1 − z),~k′i⊥ = ~ki⊥ − xi~∆⊥, li = l′i , si = s′i , for the spectators (i = 2, . . . , n) .
(2.36)

Note that the condition of x1 ∈ [0, 1] sets the valid range of x′1 to [z, 1], see the bounds of the integral over

x′1 in Eq. (2.35).



www.manaraa.com

35

A detailed derivation of the 2→ 2 transition

In the case where the hadrons are solved in the |qq̄〉 Fock sector, only the n → n (n = 2) term would

contribute to the transition,

〈ψqq̄/B(P, j,m j)|Jµ(0) |ψqq̄/A(P′, j′,m′j)〉

=
1

Nc

Nc∑
i, j=1

〈0|
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψ

(m j)∗
ss̄/B (~k⊥, x)

d js̄((1 − x)P+,−~k⊥ + (1 − x)~P⊥)b js(xP+,~k⊥ + x~P⊥)

×
∑
λ1,λ2

∫ d2~p1
⊥ dp+

1

(2π)32p+
1

∫ d2~p2
⊥ dp+

2

(2π)32p+
2

[
b†λ2c2

(p2)ūλ2(p2) + dλ2c2(p2)v̄λ2(p2)
]

γµ
[
bλ1c1(p1)uλ1(p1) + d†λ1c1

(p1)vλ1(p1)
]

×
∑
s′,s̄′

∫ 1

0

dx′

2x′(1 − x′)

∫
d2~k′⊥
(2π)3ψ

(m′j)
s′ s̄′/A(~k′⊥, x

′)

b†is′(x′P′+,~k′⊥ + x′~P′⊥)d†is̄′((1 − x′)P′,−~k′⊥ + (1 − x′)~P′⊥) |0〉 .

(2.37)

There are two non-vanishing terms as we pair up the creation and annihilation operators. One is the contri-

bution from the quark radiation and the other from the antiquark. We will use Jµq (Jµq̄ ) as the operator acting

on the quark (antiquark).

〈ψqq̄/B(P, j,m j)| J
µ
q (0) |ψqq̄/A(P′, j′,m′j)〉

=
1

Nc

Nc∑
i, j=1

〈0|
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψ

(m j)∗
ss̄/B (~k⊥, x)

d js̄((1 − x)P+,−~k⊥ + (1 − x)~P⊥)b js(xP+,~k⊥ + x~P⊥)

×
∑
λ1,λ2

∫ d2~p1
⊥ dp+

1

(2π)32p+
1

∫ d2~p2
⊥ dp+

2

(2π)32p+
2

b†λ2c2
(p2)ūλ2(p2)γµbλ1c1(p1)uλ1(p1)

×
∑
s′,s̄′

∫ 1

0

dx′

2x′(1 − x′)

∫
d2~k′⊥
(2π)3ψ

(m′j)
ss̄/A(~k′⊥, x

′)

b†is′(x′P′+,~k′⊥ + x′~P′⊥)d†is̄′((1 − x′)P′,−~k′⊥ + (1 − x′)~P′⊥) |0〉

(2.38)
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Contracting the creation and annihilation operators,

〈ψqq̄/B(P, j,m j)| J
µ
q (0) |ψqq̄/A(P′, j′,m′j)〉

=
1

Nc

Nc∑
i, j=1

∑
λ1,λ2

∑
s′,s̄′

∑
s,s̄

∫ d2~p1
⊥ dp+

1

(2π)32p+
1

∫ d2~p2
⊥ dp+

2

(2π)32p+
2

∫ 1

0

dx′

2x′(1 − x′)∫
d2~k′⊥
(2π)3

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψ

(m′j)
s′ s̄′/A(~k′⊥, x

′)ψ(m j)∗
ss̄/B (~k⊥, x)

2p+
2 θ(p+

2 )(2π)3δ(p+
2 − xP+)δ2(~p2

⊥ −
~k⊥ − x~P⊥)δ j,c2δs,λ2

2p+
1 θ(p+

1 )(2π)3δ(p+
1 − x′P′+)δ2(~p1

⊥ −
~k′⊥ − x′~P′⊥)δi,c1δs′,λ1

2(1 − x)P+θ(P+)(2π)3δ((1 − x′)P′+ − (1 − x)P+)

δ2(−~k′⊥ + (1 − x′)~P′⊥ + ~k⊥ − (1 − x)~P⊥)δ j,iδs̄′,s̄

ūλ2(p2)γµuλ1(p1) .

(2.39)

We could first integrate over x and ~k⊥ by the last two delta functions and get,

x = 1 − (1 − x′)P′+/P+, ~k⊥ = ~k′⊥ − (1 − x′)~P′⊥ + (1 − x)~P⊥ . (2.40)

Integrate over p1, p2, we get

〈ψqq̄/B(P, j,m j)| J
µ
q (0) |ψqq̄/A(P′, j′,m′j)〉

=
∑
s,s̄

∫ 1

max(0,1−P+/P′+)

dx′

2x′(1 − x′)

∫
d2k′⊥
(2π)3

1
x

∑
s′
ψ

(m′j)
s′ s̄/A(~k′⊥, x

′)ψ(m j)∗
ss̄/B (~k⊥, x)

× ūs(xP+,~k⊥ + x~P⊥)γµus′(x′P′+,~k′⊥ + x′~P′⊥) .

(2.41)

Note that the lower bound of the integral over x is not 0 when P+ < P′+, which results from the condition

x ∈ [0, 1]. However, when evaluating the x′-integral numerically, it would be more convenient to have the

integral range as [0, 1]. This is actually possible by integrating over x′ and ~k′⊥ instead in Eq. (2.39),

〈ψqq̄/B(P, j,m j)| J
µ
q (0) |ψqq̄/A(P′, j′,m′j)〉

=
∑
s,s̄

∫ 1

max(0,1−P′+/P+)

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

1
x′

∑
s′
ψ

(m′j)
s′ s̄/A(~k′⊥, x

′)ψ(m j)∗
ss̄/B (~k⊥, x)

× ūs(xP+,~k⊥ + x~P⊥)γµus′(x′P′+,~k′⊥ + x′~P′⊥) ,

(2.42)
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where

x′ = 1 − (1 − x)P+/P′+, ~k′⊥ = ~k⊥ − (1 − x)~P⊥ + (1 − x′)~P′⊥ . (2.43)

As expected, the lower bound of the integral over x is 0 when P+ < P′+. Eqs. (2.41) and (2.42) are

equivalent, and one could choose the one that facilitates the numerical calculations. If one considers the

process ψA(P′) → ψB(P) + γ(∗)(q = P′ − P) where P+ < P′+, it is more convenient to use the expression

in Eq. (2.42). However, if one considers the process ψA(P′) + γ(∗)(q = P − P′) → ψB(P), which is usually

the case in calculating the elastic form factor, where P+ > P′+, it would be more convenient to use the

expression in Eq. (2.41). In analogy, we get the hadron matrix element of the antiquark current,

〈ψqq̄/B(P, j,m j)| J
µ
q̄ (0) |ψqq̄/A(P′, j′,m′j)〉

= −
∑
s,s̄

∫ min(1,P+/P′+)

0

dx′

2x′(1 − x′)

∫
d2k′⊥
(2π)3

1
1 − x

∑
s̄′
ψ

(m j)∗
ss̄/B (~k⊥, x)ψ

(m′j)
ss̄′/A(~k′⊥, x

′)

× v̄s̄′((1 − x′)P′+,−~k′⊥ + (1 − x′)~P′⊥)γµvs̄((1 − x)P+,−~k⊥ + (1 − x)~P⊥) ,

(2.44)

where

x = x′P′+/P+ , ~k⊥ = ~k′⊥ + x′(P+~P′⊥ − P′+~P⊥)/P+ . (2.45)

The “-” sign in Eq. (2.44) implies the negative charge of the antiquark.

2.2.2.2 n + 2→ n transition

For the n + 2→ n term, as in Fig. 2.5(b), a quark and an antiquark from the initial state annihilate into a

photon, thus the electromagnetic current matrix element takes the form

〈ψB(P, j,m j)| Jµ |ψA(P′, j′,m′j)〉n+2→n
=

∑
n

n+2∏
i=1

∑
s′i ,l
′
i

∫ z

0

dx′1
2x′1

∫ 1

0

dx′i(i,1,2)

2x′i

∫ d2k′i⊥
(2π)3 2(2π)3

× δ

n+2∑
i=1

x′i − 1

 δ(2)

n+2∑
i=1

~k′i⊥

ψ(m j)∗
n/B ({xi,~ki⊥, si, li}) jµs′1,s′2

ψ
(m′j)
n+2/A({x′i ,~k

′
i⊥, s

′
i , l
′
i}) ,

(2.46)
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where the EM current is jµs′1,s′2
= v̄s′1(κ′2)γµus′2(κ′1) and the parton coordinates/constraints are



x′1,~k
′
1, for the struck quark

x′2 = z − x′1,~k
′
2 = −~k′1 + ~∆⊥, l′2 = l′1, for the struck antiquark

x′i+2 = xi(1 − z),~k′i+2⊥ = ~ki⊥ − xi~∆⊥, li = l′i+2, si = s′i+2, for the spectators(i = 1, . . . , n) .

(2.47)

2.2.3 Elastic form factor of the spin-0 particle

The elastic form factor of a (pseudo)scalar ψh is the charge form factor F(q2), defined as

〈ψh(P′)|Jµ(0)|ψh(P)〉 = (P + P′)µF(q2) , (2.48)

The charge form factor F(q2) is interpreted as the Fourier transformation of the charge density in the system.

For heavy quarkonium, the physical from factor vanishes due to charge conjugation symmetry, so in order

to study such issues as dependence on the chosen current component (see below) we calculate the fictitious

form factor from the quark current, Jµq . In the light-front wavefunction representation of the valence Fock

sector, the hadron matrix element reads

〈ψh(P′,m′j)|J
µ
q (0)|ψh(P,m j)〉 =

∑
s,s′,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3

1
x′
ψ

(m j)
ss̄/h(~k⊥, x)ψ

(m′j)∗
s′ s̄/h (~k′⊥, x

′)

× ūs′(x′P′+,~k′⊥ + x′~P′⊥)γµus(xP+,~k⊥ + x~P⊥) ,

(2.49)

where x′ = (P′+ − (1 − x)P+)/P′+ and ~k′⊥ = ~k⊥ + (1 − x)(P+~P′⊥ − P′+~P⊥)/P′+. This is essentially the same

as Eq. (2.41). We rewrite x′ and ~k′⊥ in terms of the two boost invariants we have defined in Section 2.2.1, z

and ~∆⊥, as

x′ = x + z(1 − x), ~k′⊥ = ~k⊥ + (1 − x)~∆⊥ .

The transferred momentum square q2 can be written according to Eq. (2.30) with mA = mB = mh,

q2 = −(z2m2
h + ~∆2

⊥)/(1 − z) . (2.50)

Note that q2 ≤ 0.
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One could extract the form factor with different current components. The +, ⊥ and − hadron matrix

elements can be related through the transverse Lorentz boost specified by the velocity vector ~β⊥,

v+ → v+, ~v⊥ → ~v⊥ + v+~β⊥, v− → v− + 2~β⊥ · ~v⊥ + ~β2
⊥v+ . (2.51)

The hadron matrix elements are thereby related through,

〈ψh(P′+, ~P′⊥ + P′+~β⊥)| ~J⊥ |ψh(P+, ~P⊥ + P+~β⊥)〉

= 〈ψh(P′)| ~J⊥|ψh(P)〉 + ~β⊥ 〈ψh(P′)|J+|ψh(P)〉 ,

〈ψh(P′+, ~P′⊥ + P′+~β⊥)|J− |ψh(P+, ~P⊥ + P+~β⊥)〉

= 〈ψh(P′)|J−|ψh(P)〉 + 2~β⊥ · 〈ψh(P′)| ~J⊥|ψh(P)〉 + ~β2
⊥ 〈ψh(P′)|J+|ψh(P)〉 .

(2.52)

This relation implies that the form factors extracted from different current components should be equivalent.

One can verify it by substituting Eq. (2.48) into Eq. (2.52). We would like to know if this is still true in

the valence Fock sector, and write out the form factor with different current components in the valence

light-front wavefunction representation.

Using the J+ current,

F(q2)
∣∣∣
J+ = 〈ψh(P′)|J+

q (0)|ψh(P)〉 /(P+ + P′+)

=
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3

1
x′
ψss̄/h(~k⊥, x)ψ∗ss̄/h(~k′⊥, x

′)2
√

x′P′+xP+/(P+ + P′+)

=
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3

2
2 − z

√
x(1 − z)

x + z(1 − x)
ψss̄/h(~k⊥, x)ψ∗ss̄/h(~k′⊥, x

′) .

(2.53)

In the second line, the form factor is written as a function of (z, ~∆⊥), dependence on P or P′ is eliminated.

The normalization of the form factor at q2 = 0 follows as the result of the normalization of the hadron

wavefunction,

F(0)
∣∣∣
J+ =

∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψss̄/h(~k⊥, x)ψ∗ss̄/h(~k⊥, x) = 1 . (2.54)

Now we turn to the transverse current. Assuming that the rotational symmetry on the transverse plane is

preserved, using Jx or Jy component or linear combinations of the two should be equivalent. Here we use

JR ≡ Jx + iJy and JL ≡ Jx − iJy as the transverse currents. For any transverse vector ~k⊥, which is expressed
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as (kx, ky) in the Cartesian coordinate or (k⊥, θ) in the polar coordinate, we will write its complex form as

kR ≡ kx + iky = k⊥eiθ and kL ≡ kx− iky = k⊥e−iθ. The elastic form factor extracted from the JR current reads,

F(q2)
∣∣∣
JR = 〈ψh(P′)|JR

q (0)|ψh(P)〉 /(PR + P′R)

=
z

(2 − z)qR − 2∆R

∑
s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3

×

{
ψ↑s̄/h(~k⊥, x)ψ∗

↑s̄/h(~k′⊥, x
′)

 2
√

x(1 − z)[x + z(1 − x)]
(kR −

x
z
∆R) +

2
z

√
x(1 − z)

x + z(1 − x)
qR


+ ψ↓s̄/h(~k⊥, x)ψ∗

↑s̄/h(~k′⊥, x
′)

2mqz√
x(1 − z)[x + z(1 − x)]3

+ ψ↓s̄/h(~k⊥, x)ψ∗
↓s̄/h(~k′⊥, x

′)

 2
√

x(1 − z)√
[x + z(1 − x)]3

(kR −
x
z
∆R) +

2
z

√
x(1 − z)

x + z(1 − x)
qR


}
.

(2.55)

The second term with spin flip (s′ = −s) vanishes by considering the symmetry among different spin com-

ponents of spin-0 particle h0,

ψ↑↑/h0(~k⊥, x) = ψ↓↓/h0(~k⊥, x), ψ↑↓/h0(~k⊥, x) = −ψ↓↑/h0(~k⊥, x) . (2.56)

The first and the third terms have the same wavefunction products and could be combined into one term.

F(q2)
∣∣∣
JR = 〈ψh(P′)|JR

q (0)|ψh(P)〉 /(PR + P′R)

=
z

(2 − z)qR − 2∆R

∑
ss̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψss̄/h(~k⊥, x)ψ∗ss̄/h(~k′⊥, x

′)

×
1√

x(1 − z)[x + z(1 − x)]3

{
[z + 2x(1 − z)](kR −

x
z
∆R) +

2
z

x(1 − z)[x + z(1 − x)]qR
}

=F(q2)
∣∣∣
J+ +

1
PR + P′R

∑
ss̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψss̄/h(~k⊥, x)ψ∗ss̄/h(~k′⊥, x

′)

×
1√

x(1 − z)[x + z(1 − x)]3

{
[z + 2x(1 − z)]kR +

x
2 − z

(2 − 2x − 3z + 2xz)∆R
}
.

(2.57)

We see that F(q2)
∣∣∣
JR and F(q2)

∣∣∣
J+ are different by the second term in the last line of Eq. (2.57). Moreover,

this second term depends on PR + P′R in the (z, ~∆⊥) parameter space. This indicates that fixing (z, ~∆⊥) is not

sufficient to unambiguously determine a frame in this case. However, in the Drell-Yan and the longitudinal
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frames, it can be proved that this term actually vanishes, leaving F(q2)
∣∣∣
JR = F(q2)

∣∣∣
J+ .

F(q2)
∣∣∣
JR,DY = 〈ψh(P′)|JR

q (0)|ψh(P)〉 /(PR + P′R)

=F(q2)
∣∣∣
J+,DY

+
1

PR + P′R
∑

ss̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψss̄/h(~k⊥, x)ψ∗ss̄/h(~k′⊥, x

′)
1
x

[2kR + (1 − x)qR]

=F(q2)
∣∣∣
J+,DY .

(2.58)

The second term vanishes under the transverse integral with ~k′⊥ = ~k⊥ + (1 − x)qR in the Drell-Yan frame.

Now, in the longitudinal frame:

F(q2)
∣∣∣
JR,long = 〈ψh(P′)|JR

q (0)|ψh(P)〉 /(PR + P′R)

=F(q2)
∣∣∣
J+,long +

1
PR + P′R

∑
ss̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψss̄/h(~k⊥, x)ψ∗ss̄/h(~k′⊥, x

′)

×
[z + 2x(1 − z)]kR√

x(1 − z)[x + z(1 − x)]3

=F(q2)
∣∣∣
J+,long .

(2.59)

Note that ~k′⊥ = ~k⊥ in the longitudinal frame, thus the second term vanishes since the angular integral is zero.

As with the J+ current, F(0)|JR = 1 is guaranteed by the normalization of the hadron wavefunction. At

q2 = 0, the terms proportional to kR in the integral would vanish since the angular integration would be 0.

Using the J− current,

F(q2)
∣∣∣
J− = 〈ψh(P′)|J−q (0)|ψh(P)〉 /(P− + P′−)

=
1

P2
⊥ + m2

h + (1 − z)(P′2⊥ + m2
h)

∑
ss̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψss̄/h(~k⊥, x)ψ∗ss̄/h(~k′⊥, x

′)

× 2

√
1 − z

x[x + z(1 − x)]
[m2

q + (~k⊥ + x~P⊥) · (~k′⊥ + x′~P′⊥)] .

(2.60)

In deriving Eq. (2.60), the spin flip terms vanish by exact cancellations among different spin components.

The normalization of the elastic form factor (F(0) = 1) with J− has a nontrivial requirement on the wave-

functions, and this is referred to as a type of Virial theorem [81]. We can see this explicitly in Eq. (2.61).

In the truncated Fock space, the light-front J− current is not conserved and it violates the Ward-Takahashi
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identity [82, 83]. The valence Fock sector is not sufficient to extract the elastic form factor with the J−

current.

F(0)
∣∣∣
J− = 〈ψh(P′)|J−q (0)|ψh(P)〉 /(P− + P′−)

=
1

2(P2
⊥ + m2

h)

∑
ss̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψss̄/h(~k⊥, x)ψ∗ss̄/h(~k⊥, x)

2
x

[m2
q + (~k⊥ + x~P⊥)2] .

(2.61)

A recent work by H.M. Choi, H.Y. Ryu and C.R. Ji [84] implemented a replacement of the meson mass mh

by the invariant mass m2
0 = (m2

q + ~k2
⊥)/x + (m2

q + ~k2
⊥)/(1 − x) in studying the (π0, η, η′ → γ∗γ∗) transitions

with a manifestly covariant model. Following the format of this treatment, we see that restoring F(0) = 1 in

Eq. (2.61) would require a replacement of m2
h → (m2

q + ~k2
⊥)/x − (1 − x)~P2

⊥. In the meson rest frame where

~P⊥ = ~0⊥, the expression reduces to m2
h → (m2

q +~k2
⊥)/x, suggesting to replace the meson mass by the invariant

mass of the quark, or half of the invariant mass of the meson.

To conclude, the J+ and ~J⊥ current components could guarantee the normalization of the elastic form

factor in the valence Fock sector, but the J− component could not. Though the elastic form factors extracted

from the J+ and the ~J⊥ components are expected to be the same through a transverse boost, the valence light-

front wavefunction representation shows that the two are the same only in the Drell-Yan and the longitudinal

frames. In a practical calculation, J+ and the Drell-Yan frame is often preferred, and the main advantage

of this choice is that vacuum pair production/ annihilation is suppressed [85, 86, 72]. A recent study on the

frame dependence of the elastic form factor of pseudoscalars using the J+ current can be found in Ref. [65].

Here we present the form factors of the spin-0 heavy quarkonia using their light-front wavefunctions

solved in the valence Fock sector [3]. We carry out the calculation in the Drell-Yan frame using the J+ or

equivalently the ~J⊥ current. Fig. 2.6 shows the numerical results for the spin-0 states of heavy quarkonia

below their respective open-flavor thresholds, those states are charmonia ηc(1S ), χc0(1P) and ηc(2S ), and

bottomonia ηb(1S ), χb0(1P), ηb(2S ) and ηb(3S ). The results show a good convergence trend as the basis

cutoff increases as Nmax = Lmax = 8, 16, 24, 32. We take the largest basis Nmax = Lmax = 32 as the result,

and use the range between Nmax = Lmax = 24 and 32 as the uncertainty. The form factors for the radially

excited states, ηc(2S ), ηb(2S ) and ηb(3S ) exhibit a tendency to develop a node.

In nonrelativistic quantum mechanics, the root-mean-square charge (mass) radius is the expectation

value of the displacement operator that characterizes the charge (mass) distribution of the system. In quan-
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Figure 2.6 The elastic form factor of spin-0 states of heavy quarkonia calculated in the Drell-Yan
frame with the J+ or equivalently the ~J⊥ current, according to Eq. (2.53) with z = 0.
The light-front wavefunctions used in these results are solved in the BLFQ approach at
different basis truncations (Nmax = Lmax = 8, 16, 24, 32) [3].

tum field theory, no such local position operator is allowed and, instead, the charge (mass) radius of the

hadron is defined from the charge (gravitational) form factor at small momentum transfer:

〈r2
h〉 = lim

q2→0
−6

∂

∂q2 F(q2) . (2.62)

The charge radii of spin-0 quarkonia are summarized in Table 2.4. Note that the BLFQ results with running

coupling are obtained in a larger basis space which tends to enhance UV effects and generally favors smaller

radii.
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Table 2.4 The charge mean squared radii 〈r2
h〉 of (pseudo) scalar charmonia and bottomo-

nia [Eq. (2.62)]. The BLFQ results with the running coupling αs are obtained at
Nmax = Lmax = 32. The difference between the Nmax = Lmax = 32 and 24 values are
presented as the uncertainty. The BLFQ results with the fixed coupling αs are obtained at
Nmax = Lmax = 24. The difference between the Nmax = Lmax = 24 and 16 values are pre-
sented as the uncertainty. We compare our results with those of the Contact Interaction
(CI), Lattice and Dyson-Schwinger Equation (DSE) methods.

(fm2) ηc χc0 η′c ηb χb0 η′b η′′b
BLFQ(running αs[3]) 0.029(1) 0.057(1) 0.120(1) 0.013(0) 0.031(0) 0.051(0) 0.095(1)

BLFQ(fixed αs[48])[66] 0.043(5) 0.07(1) 0.149(8) 0.016(1) 0.037(1) 0.056(2)
CI [87, 88, 89] 0.044 0.012

Lattice [90] 0.063(1) 0.095(6)
DSE [91, 92] 0.048(4)

More on Charge Radii

In the Drell-Yan frame, q+ = 0 and q2 = −|~q⊥|
2. We can write ~q⊥ in the polar coordinate {q, θ}. With a

change of variable, t = q2,

∇2
~q⊥

=
∂2

∂q2 +
1
q
∂

∂q
+

1
q2

∂2

∂θ2

=
∂2

∂t2

(
∂t
∂q

)2
+
∂

∂t

(
∂2t
∂q2

)
+

1
√

t

∂

∂t
∂t
∂q

+
1
t
∂2

∂θ2

=4t
∂2

∂t2 + 4
∂

∂t
+

1
t
∂2

∂θ2 .

(2.63)

At the limit of q2 → 0, the first term vanishes. Since the form factor does not have angular dependence, the

third term vanishes as well. It follows that

∂

∂t

∣∣∣∣∣
t=0

=
1
4
∇2
~q⊥
. (2.64)

We can thereby rewrite the charge radius in Eq. (2.62) in terms of the two-dimensional Laplacian of the

charge form factor,

〈r2
h〉 = −

3
2
∇2
~q⊥

F(q2)
∣∣∣∣∣
q2=0

. (2.65)

We have already mentioned that the physical form factors of a hadron should receive contributions from

each constituent, F(q2) =
∑

f e f F f (q2), where f is the constituent (anti)quark with charge e f . Though for



www.manaraa.com

45

quarkonium, the physical form factor vanishes due to charge conjugation (see Appendix D.1), we calculate

the fictitious form factor contributed from the quark only. For a charged hadron, such as π± and proton, one

should consider its physical form factor that sums over the contributions of all constituent partons. In the

following, we will derive the contributions of the quark and the antiquark separately.

• q

The charge form factor contributed by the quark is calculated as

Fq(q2) = 〈h(P′)| J+
q (0) |h(P)〉 /(2P+)

=
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψs,s̄/h(~k⊥, x)ψ∗s,s̄/h(~k⊥ + (1 − x)~q⊥, x)

=
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3

×

∫
d2r⊥

∫
d2r′⊥x(1 − x)e−i~k⊥·~r⊥ei(~k⊥+(1−x)~q⊥)·~r′⊥ψ̃s,s̄/h(~r⊥, x)ψ̃∗s,s̄/h(~r′⊥, x)

=
∑
s,s̄

∫ 1

0

dx
4π

∫
d2r⊥ei(1−x)~q⊥·~r⊥ψ̃s,s̄/h(~r⊥, x)ψ̃∗s,s̄/h(~r⊥, x) .

(2.66)

ψ̃s,s̄/h(~r⊥, x) is the light-front wavefunction of the spin-0 particle h in coordinate space. The charge

radius of the constituent quark is

〈r2
h〉q = −

3
2
∇2
~q⊥

Fq(q2)
∣∣∣∣∣
q2=0

=
3
2

∑
s,s̄

∫ 1

0

dx
4π

∫
d2r⊥(1 − x)2~r2

⊥ψ̃s,s̄/h(~r⊥, x)ψ̃∗s,s̄/h(~r⊥, x) . (2.67)

• q̄

The charge form factor contributed by the antiquark is calculated as

Fq̄(q2) ≡ 〈h(P′)| J+
q̄ (0) |h(P)〉 /(2P+)

=
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψs,s̄/h(~k⊥, x)ψ∗s,s̄/h(~k⊥ − x~q⊥, x)

=
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3

×

∫
d2r⊥

∫
d2r′⊥x(1 − x)e−i~k⊥·~r⊥ei(~k⊥−x~q⊥)·~r′⊥ψ̃s,s̄/h(~r⊥, x)ψ̃∗s,s̄/h(~r′⊥, x)

=
∑
s,s̄

∫ 1

0

dx
4π

∫
d2r⊥e−ix~q⊥·r⊥ψ̃s,s̄/h(~r⊥, x)ψ̃∗s,s̄/h(~r⊥, x) .

(2.68)
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The charge radius of the constituent anti-quark is

〈r2
h〉q̄ = −

3
2
∇2
~q⊥

Fq̄(q2)
∣∣∣∣∣
q2=0

=
3
2

∑
s,s̄

∫ 1

0

dx
4π

∫
d2r⊥x2~r2

⊥ψ̃s,s̄/h(~r⊥, x)ψ̃∗s,s̄/h(~r⊥, x) (2.69)

As an example, the charge radius of π+ sums over the contributions from u and d̄.

〈r2
π+〉 =Qu 〈r2

π+〉u + Qd̄ 〈r
2
π+〉d̄

=
3
2

∑
s,s̄

∫ 1

0

dx
4π

∫
d2r⊥

[2
3

(1 − x)2 +
1
3

x2
]
~r2
⊥ψ̃s,s̄/π+(~r⊥, x)ψ̃∗s,s̄/π+(~r⊥, x) .

(2.70)

The dimensionless fractional charge of the quark is, Qu = +2/3 for the up quark and Qd̄ = +1/3 for the

anti-down quark.

2.2.4 Elastic form factor of the spin-1 particle

In the Lorentz decomposition of the hadron matrix elements for spin-one particles, three Lorentz-

invariants arise along with three elastic form factors. A detailed derivation of the Lorentz decomposition

can be found in Appendix D.2. The elastic form factors for a spin 1 particle, F1, F2 and F3, are defined as

the following,

Iµm′j,m j
≡ 〈ψh(P′, j = 1,m′j)| J

µ(0) |ψh(P, j = 1,m j)〉

=(Pµ + P′µ)[(e′∗ · P)(e · P′)F1(q2) + (e′∗ · e)F2(q2)] + [eµ(e′∗ · P) + e′∗µ(e · P′)]F3(q2) .
(2.71)

The polarization vectors of the hadron are eµ = eµ(P,m j) and e′µ = e′µ(P′,m′j). For each current component,

µ = +,−, 1, 2, there are nine combinations of the magnetic projections for the initial and the final states,

m j(m′j) = 0,±1. Parity and charge conjugation symmetries on the light front leaves four independent hadron

matrix elements, m j(m′j) = 1(−1), 1(1), 1(0), 0(0). The rotational invariance of the current should provide

another constraint, namely the angular condition, and reduces the number to three, which is in agreement

with the number of the form factors. The front-form angular condition for I+
m j,m′j

could be obtained via

Melosh rotation from the instant-form I+
z,z = I+

y,y [93, 94]. In the Breit frame where P+ = P′+ and ~P′⊥ = −~P⊥,

the angular condition reads as

∆(q2) = (1 + 2η)I+
1,1 + I+

1,−1 −
√

8ηI+
1,0 − I+

0,0 = 0 , (2.72)



www.manaraa.com

47

where η ≡ −q2/(4M2) and M is the mass of the hadron, note that q2 ≤ 0 in this frame. In the light-front

dynamics, the rotations around the x and y axis are dynamical [95], so wavefunctions with a fixed number of

constituents no longer retain such covariance, and the angular condition is violated. The breakdown of the

rotational symmetry leads to ambiguities in extracting the form factors from the light-front matrix elements

I+
m j,m′j

. In the literature, there are different extraction schemes for spin-one form factors [96, 97, 98, 99, 100].

Using the J+ current component,

〈ψh(P′, j = 1,m′j)| J
+(0) |ψh(P, j = 1,m j)〉

=2P+



q4

4M2 F1(q2) +

( q2

2M2 − 1
)
F2(q2) +

q2

2M2 F3(q2), m j = m′j = 0

−
q2

2
F1(q2) − F2(q2), m j = m′j = ±1

e∓iδ[
q3

2
√

2M
F1(q2) +

q
√

2M
F2(q2) +

q

2
√

2M
F3(q2)], m j = 0(∓1), m′j = ±1(0)

−e∓2iδ q2

2
F1(q2), m j = ∓1,m′j = ±1

(2.73)

The phase factor is defined as δ ≡ arg q⊥, such that qx + iqy = qeiδ. We thereby redefine the helicity

amplitudes to get rid of the phase factor as the following

I+
m′j,m j

≡ 〈ψh(P′, j = 1,m′j)| J
+(0) |ψh(P, j = 1,m j)〉 e

i(m′j−m j)δ/(2P+) .

It is often conventional to carry out the calculation in the frame with P′x = qx/2, Px = −qx/2 and P′y = Py =

qy = 0, such that δ = 0 [101, 94, 102]. We adopt the GK prescription [96, 102] to calculate the elastic form

factors, namely the charge form factor GC(q2), the magnetic form factor GM(q2), and the quadruple form

factor GQ(q2).

GC(q2) =
1
3

[(3 − 2η)I+
1,1 + I+

1,−1 + 2
√

2ηI+
1,0] ,

GM(q2) =2I+
1,1 −

√
2
η

I+
1,0 ,

GQ(q2) = −
2
3

√
2[ηI+

1,1 + I+
1,−1 −

√
2ηI+

1,0] .

(2.74)

Here we present the form factors of the spin-1 heavy quarkonia using their light-front wavefunctions

solved in the valence Fock sector [3]. We carried out the calculation in the Drell-Yan frame using the

J+ current. Fig. 2.7 shows the numerical results of the charge form factors for the spin-1 states of heavy
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quarkonia below their respective open-flavor thresholds, those states are charmonia J/ψ, ψ(2S ), ψ(1D),

χc1(1P) and hc(1P), and bottomonia Υ(1S ), Υ(2S ), Υ(3S ), Υ(1D), χb1(1P) and hb(1P). The magnetic and

quadruple form factors of those states are shown in Fig. 2.8 and Fig. 2.9 respectively.

The results show a good convergence trend as the basis cutoff increases as Nmax = Lmax = 8, 16, 24, 32.

We take the largest basis Nmax = Lmax = 32 as the result, and use the range between Nmax = Lmax = 24

and 32 as the uncertainty. The comparison between charmonia and bottomonia is also of interest. For

comparable states (those plotted on the same graph), the form factors show similarity in their patterns.

Bottomonium is associated with a larger mass scale and is broader in momentum space.

The multipole moments of the hadron are defined from the corresponding form factors at small momen-

tum transfer. They are the charge root-mean-squared (rms) radius 〈r2
h〉, the magnetic moment µ, and the

quadrupole moment Q [98],

〈r2
h〉 = lim

t→0
−6

∂

∂t
GC(q2), (2.75)

µ = lim
t→0

GM(q2), (2.76)

Q = lim
t→0

3
√

2
∂

∂t
GQ(q2) , (2.77)

where t ≡ −q2.

Note that for quarkonium, we calculate the fictitious charge radius contributed from the quark only, as

done for the charge form factor. But for a charged hadron, one should consider its charge radius that sums

over the contributions of all constituent partons, see discussions in Section 2.2.3. The charge radii, magnetic

moments and the quadrupole moments of spin-1 quarkonia are summarized in Tables 2.5, 2.6 and 2.7,

respectively. In these calculations, we take the light-front wavefunctions calculated from the BLFQ approach

with a running coupling on the one-gluon exchange term [3]. The results are close to those calculated with

BLFQ light-front wavefunction of the fixed coupling [48, 66].

As shown in Table 2.6, the BLFQ results of the magnetic moments for those mesons are above the

canonical value of 2 with the running-coupling LFWF. The canonical magnetic moment is obtained when

the overlaps of states of different magnetic projections vanish, i.e. I+
1,0(q2 = 0) = I+

1,−1(q2 = 0) = 0 in

Eqs. (2.74) and (2.76). In our calculation, the deviation from 2 comes from the non-vanishing ratio of the
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Figure 2.7 The charge form factor of spin-1 states of heavy quarkonia at different basis
truncations, Nmax = Lmax = 8, 16, 24, 32. The light-front wavefunctions used
in these results are solved in the BLFQ approach at different basis truncations
(Nmax = Lmax = 8, 16, 24, 32) [3].
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Figure 2.8 The magnetic form factor of spin-1 states of heavy quarkonia at different basis trunca-
tions, Nmax = Lmax = 8, 16, 24, 32. The light-front wavefunctions used in these results
are solved in the BLFQ approach [3].
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Figure 2.9 The quadruple form factor of spin-1 states of heavy quarkonia at different basis trunca-
tions, Nmax = Lmax = 8, 16, 24, 32. The light-front wavefunctions used in these results
are solved in the BLFQ approach [3].
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Table 2.5 The charge mean squared radii 〈r2
h〉 [Eq. (2.75)] for spin-1 charmonia and bottomonia.

The difference between the Nmax = Lmax = 24 and 32 values are presented as the uncer-
tainty in the BLFQ results.

(fm2)
BLFQ (running-αs [3]) BLFQ (fixed-αs [48]) CI Lattice DSE

this work [66] [89] [90] [91, 92]
J/ψ 0.0402(2) 0.045(3) 0.068 0.066(2) 0.052(3)
χc1 0.066(0) 0.075(2)

hc(1P) 0.106(1)
ψ′ 0.13(0) 0.15(1)

ψ(1D) 0.13(0)
Υ 0.015(0) 0.016(1) 0.038
χb1 0.028(0) 0.0270(4)

hb(1P) 0.048(0)
Υ′ 0.053(0) 0.057(3)

Υ(1D) 0.06(0)
Υ′′ 0.097(0)

Table 2.6 The magnetic moment µ [Eq. (2.76)] for spin-1 charmonia and bottomonia. The differ-
ence between the Nmax = Lmax = 24 and 32 values are presented as the uncertainty in
the BLFQ results.

BLFQ (running-αs [3]) BLFQ (fixed-αs [48]) CI Lattice DSE
this work [66] [89] [90] [91, 92]

J/ψ 2.05(0) 1.952(3) 2.047 2.10(3) 2.13(4)
χc1 2.40(0)

hc(1P) 2.99(1)
ψ′ 2.02(0) 2.05(2)

ψ(1D) 3.36(0)
Υ 3.38(0) 1.985(1) 2.012
χb1 2.46(0)

hb(1P) 2.99(0)
Υ′ 2.01(1) 1.992(1)

Υ(1D) 3.38(0)
Υ′′ 2.01(0)
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off-diagonal hadron matrix element to q, I+
1,0(q2)/q, at q2 = 0 according to Eq. (2.74). This value thereby

reflects the subtle structure of the mesons. Meanwhile, one should be aware that different values of the

magnetic moments could be obtained when a different prescription is chosen in extracting the elastic form

factors (cf. the GK prescription in Eq. (2.74)) [101].

Table 2.7 The quadrupole moments Q × M2 [Eq. (2.77)] for spin-1 charmonia and bottomonia. M
is the mass of the corresponding meson, which are taken from PDG [2] if available, and
the Υ(1D) mass is taken from Ref. [3]. The difference between the Nmax = Lmax = 24
and 32 values are presented as the uncertainty in the BLFQ results.

BLFQ (running-αs [3]) BLFQ (fixed-αs [48]) CI Lattice DSE
this work [66] [89] [90] [91, 92]

J/ψ -0.816(4) -0.78(2) -0.748 -0.23(2) -0.28(1)
χc1 -6.74(6)

hc(1P) 6.45(0)
ψ′ 0.45(7) 0.2(2)

ψ(1D) -7.3(2)
Υ -0.668(2) -0.731(9) -0.704
χb1 -19.7(0)

hb(1P) 31.1(0)
Υ′ 0.25(4) 0.1(1)

Υ(1D) -22.5(0)
Υ′′ 1.5(1)

Table 2.7 shows that the meson states with orbital excitations have rather large quadrupole moments

from the BLFQ calculation, such as χb1 and Υ(1D). The quadrupole moment describes the effective shape

of the ellipsoid of the charge distribution. A large magnetic moment indicates a strong deviation from the

spherically symmetry, which is expected for states assigned as P-waves and D-waves.

2.3 Radiative transitions

The electromagnetic (EM) transition between quarkonium states, which occurs via emission of a photon,

ψA → ψBγ, offers insights into the internal structure and the dynamics of such systems. The magnetic dipole

(M1) transition, which takes place between pseudoscalar and vector mesons (ψA, ψB = V,P or P,V), has

been detected with strong signals [2] and stimulates various theoretical investigations [103, 14, 6, 7, 104].
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Similarly, the EM Dalitz decay [105], ψA → ψBl+l−, can be treated by coupling a virtual photon to the final

lepton pair. The Dalitz decay, also known as the leptonic conversion decay, provides additional information

about the meson structure owing to the virtual photon kinematics. Though widely observed in the light

meson sector, such as φ → π0e+e− [106], φ → ηe+e− [107, 108], and ω → π0e+e− [109, 110], only a few

such decays have been detected in the heavy sector. The observed Dalitz decays of quarkonium are decays to

a light meson plus a lepton pair, such as J/ψ → ηe+e−, J/ψ → η′e+e− [111], and ψ(3686) → η′e+e− [112].

We investigate the M1 EM Dalitz decay with initial and final mesons both being heavy quarkonia, in the

hope of providing another probe of the interaction of quarkonium states with photons.

2.3.1 Transition form factor and decay width

The Lorentz covariant decomposition for the electromagnetic transition matrix element between a vector

meson (V) and a pseudoscalar (P) is [90],

Iµm j ≡ 〈P(P)| Jµ(0) |V(P′,m j)〉 =
2V(q2)

mP + mV
εµαβσPαP′βeσ(P′,m j) , (2.78)

where qµ = P′µ−Pµ represents the momentum transfer between the two mesons. V(q2) is the transition form

factor. mP and mV are the masses of the pseudoscalar and the vector, respectively. eσ is the polarization

vector of the vector meson, and m j = 0,±1 is the magnetic projection. A detailed derivation of the Lorentz

decomposition can be found in Appendix D.3.

In the physical process ofV → P + γ, the photon is on shell (q2 = 0). The transition amplitude is:

Mm j,λ = 〈P(P)| Jµ(0) |V(P′,m j)〉 ε∗µ,λ(q)|q2=0 , (2.79)

where εµ,λ is the polarization vector of the final-state photon with its spin projection λ = ±1. The decay

width is usually measured in the rest frame of the initial particle, as such, the momenta of the initial meson,

final meson, and the photon read (see Appendix A.1 for the convention of ordering the 4-vector components

in light-front coordinates),

P′ = (mV,mV, 0, 0) ,

P = (
√

m2
P

+ k2,
√

m2
P

+ k2, k, 0) ,

q = P′ − P = (k, k,−k, 0) .
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The momentum of the photon is determined by energy-momentum conservation, |~q| = k = (m2
V
−m2

P
)/2mV.

The transition amplitudes for different polarizations are,

Mm j,λ =
4V(q2)

mP + mV



∓
imVk

2
√

2
, m j = 0, λ = ±1

−
imVk

4
, m j = 1, λ = ±1

imVk
4

, m j = −1, λ = ±1

. (2.80)

The decay width of V → P + γ follows by averaging over the initial polarization and summing over the

final polarization.

Γ(V → P + γ) =

∫
dΩq

1
32π2

|~q|
m2
V

1
2JV + 1

∑
m j,λ

|Mm j,λ|
2 =

(m2
V
− m2

P
)3

(2mV)3(mP + mV)2

|V(0)|2

(2JV + 1)π
. (2.81)

JV = 1 is the spin of the initial vector meson. To calculate the width of P → V + γ, exchange mV and mP,

and replace JV with JP = 0 for the initial pseudoscalar in Eq. (2.81).

The amplitude of the Dalitz decayV → P + l+ + l− reads

Mm j,λ = 〈V(P′,m j)| Jµ(0) |P(P)〉
1
q2 ūγµu, (2.82)

where ūγµu is the leptonic current.

For the Dalitz decay ψA → ψBl+l− (ψA, ψB = V,P or P,V), the physical region of interest is 4m2
l ≤

q2 ≤ (mA − mB)2. The effective mass spectrum of the lepton pair could be derived as [113]:

dΓ(ψA → ψBl+l−)
dq2 · Γ(ψA → ψBγ)

=
α

3π

√
1 −

4m2
l

q2

(
1 +

2m2
l

q2

) 1
q2

×

[(
1 +

q2

m2
A − m2

B

)2
−

4m2
Aq2

(m2
A − m2

B)2

]3/2∣∣∣∣∣V(q2)
V(0)

∣∣∣∣∣2 .
(2.83)

2.3.2 Light-front dynamics

In principle, the transition form factor V(q2) defined in Eq. (2.78) is Lorentz invariant. However, prac-

tical calculations usually take place in a finite Fock space, where the Lorentz symmetry is violated. Conse-

quently, two spurious dependences of the transition form factor could emerge, one on the current component

and the other on the reference frame. In such situations, knowing the current or frame dependence could
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help quantify theoretical uncertainties. One further issue to resolve is whether there exists a preferred current

or a preferred frame for calculations in finite Fock space such that the neglected contributions from higher

Fock sectors could be minimized. It is the purpose of our work to investigate the violation of the Lorentz

symmetry through these two effects.

Let us first study the transition form factor from different current components (µ = +,−, x, y) and dif-

ferent magnetic projections (m j = 0,±1) of the vector meson, without choosing any specific frame. As in

the calculation for the elastic form factors in Section 2.2, we use JR ≡ Jx + iJy and JL ≡ Jx − iJy as the

transverse currents. From the vector decomposition in Eq. (2.78), we obtain the following formulas,

I+
m j

=
2V(q2)

mP + mV



0, m j = 0

i
√

2
P+P′+

[PR

P+
−

P′R

P′+
]
, m j = 1

−
i
√

2
P+P′+

[PL

P+
−

P′L

P′+
]
, m j = −1

(2.84)

I−m j
=

2V(q2)
mP + mV



imV
P′RPL − P′LPR

P′+
, m j = 0

i
√

2

[m2
P

P′R + P′RPRPL

P+
−

m2
V

PR + P′RP′RPL

P′+
]
, m j = 1

−
i
√

2

[m2
P

P′L + P′LPRPL

P+
−

m2
V

PL + P′LP′LPR

P′+
]
, m j = −1

(2.85)

IR
m j

=
2V(q2)

mP + mV



−imVP+
[PR

P+
−

P′R

P′+
]
, m j = 0

i
√

2
P′RP+

[PR

P+
−

P′R

P+

]
, m j = 1

−
i
√

2
P′+

[
P+

( m2
P

(P+)2 −
m2
V

(P′+)2

)
+ PR

(PL

P+
−

P′L

P′+
)]
, m j = −1

(2.86)

IL
m j

=
2V(q2)

mP + mV



imVP+
[PL

P+
−

P′L

P′+
]
, m j = 0

i
√

2
P′+

[
P+(

m2
P

(P+)2 −
m2
V

(P′+)2 ) + PL(
PR

P+
−

P′R

P′+
)
]
, m j = 1

−
i
√

2
P′LP+

[PL

P+
−

P′L

P′+
]
, m j = −1

(2.87)
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Those matrix elements are related through the Lorentz transformation, and all the non-vanishing 11 out

of the 12 different formulas in Equations (2.84) to (2.87) should lead to the same V(q2). The hadron matrix

elements of different current components but with the same m j can be related through the transverse Lorentz

boost as written in Eq. (2.51). In terms of the +, ⊥ and − hadron matrix elements, we get,

〈P(P+, ~P⊥ + P+~β⊥)| ~J⊥ |V(P′+, ~P′⊥ + P′+~β⊥,m j)〉

= 〈P(P+, ~P⊥)| ~J⊥ |V(P′+, ~P′⊥,m j)〉 + ~β⊥ 〈P(P+, ~P⊥)| J+ |V(P′+, ~P′⊥,m j)〉 .

〈P(P+, ~P⊥ + P+~β⊥)|J− |V(P′+, ~P′⊥ + P′+~β⊥,m j)〉

= 〈P(P+, ~P⊥)| J− |V(P′+, ~P′⊥,m j)〉 + 2~β⊥ · 〈P(P+, ~P⊥)| ~J⊥ |V(P′+, ~P′⊥,m j)〉

+ ~β2
⊥ 〈P(P+, ~P⊥)| J+ |V(P′+, ~P′⊥,m j)〉 .

(2.88)

The above relations imply that, for each m j state of the vector meson, using J+, JR, JL and J− should give

the same V(q2). One exception is that with m j = 0, V(q2) cannot be extracted from J+. One can verify it by

applying Eq. (2.88) to Eqs. (2.84), (2.85), (2.86) and (2.87). Though this transformation itself is kinematic

and survives the Fock space truncation, the current operator Jµ is not complete in the truncated Fock space.

Results from different current components may be different due to violations of Lorentz symmetry in-

troduced by the Fock sector truncation as well as by the modeling of systems. These approximations have

led to extensive discussions in the literature [70, 71, 72, 75, 73]. The “+” component, known as the “good

current”, is typically used, together with the Drell-Yan frame (q+ = 0), to avoid contributions from pair pro-

duction/annihilation in vacuum. This is also our choice in calculating the elastic form factors in Section 2.2.

The transverse components have been shown to be consistent with the “+” component in the limit of zero

momentum transfer in certain theories, such as the φ3 theory [72] and the spin-0 two-fermion systems [73].

We have also shown in Section 2.2 that in calculating the charge form factor of the spin-0 particles, how-

ever only in the Drell-Yan or the longitudinal frames, using the transverse current would lead to the same

results with the plus current. Another option, the “-” component, is known as the “bad current”, due to its

association with the zero-mode contributions.

The question then arises: to what extent is the Lorentz symmetry violated by Fock sector truncation?

To be more concrete, for calculations in the valence Fock sector, are we expecting 11 different results (from

Equations (2.84) to (2.87)) or less?
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First, we expect that the results from different m j states of the vector meson might be different, since

the ladder operator relating those states is dynamic and cannot be preserved in the valence Fock sector.

Considering the symmetry between the m j = 1 and m j = −1 states, there are at least two different results,

one with m j = 0 and the other with m j = ±1. Then, we know that for each m j value, using different current

components could make a difference if the transverse boost in Eq. (2.88) is not guaranteed. But the two

transverse currents, JR and JL, should give the same results since rotations in the transverse plane should be

preserved in the valence Fock sector. Then, there are three different results for each m j state, from J+, J⊥,

or J−. Therefore, in total, there are five (not six, since the combination of J+ and m j = 0 is not available)

different extractions of the transition form factors with different current components and different m j in the

valence Fock sector.

We summarize the formulas of extracting the transition form factor V(q2) from different current compo-

nents and different m j states of the vector meson in Table. 2.8. To simplify the expression, we take the two

variables defined in Sec. 2.2.1, z ≡ (P′+ − P+)/P′+ and ~∆⊥ ≡ ~q⊥ − z~P′⊥. This also prepares us to study the

frame dependence. The five independent extractions in a truncated Fock space are indicated by five different

colors in Table. 2.8.

In the valence Fock sector, the five independent hadron matrix elements overdetermine the transition

form factor. In practice, the different prescriptions of extracting the same transition form factor could provide

a test of violation of the Lorentz symmetry in the calculation. But more importantly, we would like to know

if there is a preferred choice such that the result is closer to the true result that would emerge from a full

Fock space basis.

Working in the valence Fock sector, we take the impulse approximation, in which the interaction of

the external current with the meson is the summation of its coupling to the quark and to the antiquark, as

illustrated in Fig. 2.10. The vertex dressing as well as pair creation/annihilation from higher order diagrams

are neglected. The hadron matrix element can be written accordingly as a sum of the quark term and the

antiquark term:

〈P(P′)| Jµ(0) |V(P,m j)〉 = eQ f 〈P(P′)| Jµq (0) |V(P,m j)〉 − eQ f 〈P(P′)| Jµq̄ (0) |V(P,m j)〉 . (2.89)
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Table 2.8 The formulas of extracting the transition form factor V(q2) from different current compo-
nents and different m j states of the vector meson, derived from Eqs. (2.84), (2.85), (2.86)
and (2.87). The five independent extractions in a truncated Fock space are indicated in
five different colors: orange, green, red, blue and brown.

2V(q2)
mP + mV

m j = 0 m j = 1 m j = −1

J+ -
i
√

2I+
1

P′+∆R

−i
√

2I+
−1

P′+∆L

JR
−iIR

0

mV∆R

i
√

2IR
1

P′R∆R

i
√

2(1 − z)IR
−1

(m2
P
− (1 − z)2m2

V
− PR∆L)

JL
iIL

0

mV∆L

−i
√

2(1 − z)IL
1

(m2
P
− (1 − z)2m2

V
− PL∆R)

−i
√

2IL
−1

P′L∆L

J−
−iP+I−0

mV(∆RPL − ∆LPR)

−i
√

2P+P′+I−1
P′+P′R(m2

P
− PL∆R) − P+PRm2

V

i
√

2P+P′+I−
−1

P′+P′L(m2
P
− PR∆L) − P+PLm2

V

V(P,mj) P(P ′)

γ(−q, λ)

+
V(P,mj) P(P ′)

γ(−q, λ)

Figure 2.10 Radiative transition from vector to pseudoscalar meson in |qq̄〉 Fock space represen-
tation within the impulse approximation. In these figures light-front time x+ flows to
the right. The double-lines represent the hadrons. The solid lines represent the quark
or the antiquark. The wavy lines represent the probing photon. The shaded areas
represent the light-front wavefunctions. (Figure adapted from Ref. [9].)
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Bu restoring the quark charges, the current operator reads Jµ(x) = e
∑

f Q fψ f (x)γµψ f (x) where ψ f (x) is the

quark field operator with flavor f ( f = u, d, s, c, b, t). Jq and Jq̄ are the normal ordered pure quark (b†b)

and antiquark (d†d) part of Jµ, respectively, where b (d) is the quark (antiquark) annihilation operator. The

dimensionless fractional charge of the quark is, Q f = Qc = +2/3 for the charm quark and Q f = Qb = −1/3

for the bottom quark. The electric charge e =
√

4παEM. For quarkonium, due to the charge conjugation

symmetry, the antiquark gives the same contribution as the quark to the total hadronic current. So, for our

purpose, we calculate the hadron matrix element for the quark part. As such, we compute V̂(q2) which is

related to V(q2) by

V(q2) = 2eQ f V̂(q2) .

We can then write out the hadron matrix elements in the valence light-front wavefunction representation

from the quark current, as in Eqs. (2.90) to (2.93).

I+
m j

=
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

1
x′

2
√

x′P′+xP+ψ∗ss̄/P(~k⊥, x)ψ(m j)
ss̄/V(~k′⊥, x

′) . (2.90)

I−m j
=

∑
s̄

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

1
x′

2
√

x′P′+xP+

×

[
ψ∗
↑s̄/P(~k⊥, x)ψ(m j)

↑s̄/V(~k′⊥, x
′)[m2

q + (k′R + x′P′R)(kL + xPL)]

+ ψ∗
↑s̄/P(~k⊥, x)ψ(m j)

↓s̄/V(~k′⊥, x
′)mq(kL + xPL − k′L − x′P′L)

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j)

↑s̄/V(~k′⊥, x
′)mq(k′R + x′P′R − kR − xPR)

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j)

↓s̄/V(~k′⊥, x
′)[m2

q + (k′L + x′P′L)(kR + xPR)]
]
,

(2.91)

IR
m j

=
∑

s̄

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

1
x′

2
√

x′P′+xP+

×

[
ψ∗
↑s̄/P(~k⊥, x)ψ(m j)

↑s̄/V(~k′⊥, x
′)xP+(k′R + x′P′R)

+ ψ∗
↑s̄/P(~k⊥, x)ψ(m j)

↓s̄/V(~k′⊥, x
′)mq(xP+ − x′P′+)

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j)

↓s̄/V(~k′⊥, x
′)x′P′+(kR + xPR)

]
,

(2.92)
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IL
m j

=
∑

s̄

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

1
x′

2
√

x′P′+xP+

×

[
ψ∗
↑s̄/P(~k⊥, x)ψ(m j)

↑s̄/V(~k′⊥, x
′)x′P′+(kL + xPL)

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j)

↑s̄/V(~k′⊥, x
′)mq(x′P′+ − xP+)

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j)

↓s̄/V(~k′⊥, x
′)xP+(k′L + x′P′L)

]
,

(2.93)

Now let us analyze the transition form factors extracted from these hadron matrix elements. There are

five groups of combinations of the current component and the magnetic projection according to Table 2.8.

1. J+ and m j = ±1

The light-front wavefunction representation of the transition form factor reads,

V̂ |J+,m j=1(q2) =
i(mV + mP)
√

2P′+∆R
〈P(P)| J+

q (0) |V(P′,m j = 1)〉

=
i
√

2(mV + mP)
∆R

∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

√
x(1 − z)

x + z(1 − x)

× ψ∗ss̄/P(~k⊥, x)ψ(m j=1)
ss̄/V (~k′⊥, x

′) .

(2.94)

Note that the m j = −1 state would lead to the same result, considering the symmetry of the m j = ±1

light-front wavefunctions. According to Eq. (2.94), the transition form factor can be evaluated as a

function of z and ∆⊥. It is evident from this expression that the overlapped spin components of the

two wavefunctions indicate no spin-flip (between spin-triplet and spin-singlet), which may appear

counter-intuitive for the M1 transition.

2. JR/L and m j = 0

Using JR and JL current components should give the same result with the m j = 0 state of the vector
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meson. Here we present the expression derived from JR,

V̂ |JR,m j=0(q2)

= − i
mV + mP
2mV∆R 〈P(P)| JR

q (0) |V(P′,m j = 0)〉

= − i
mV + mP
2mV∆R

∑
s̄

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

×

{
ψ∗
↑s̄/P(~k⊥, x)ψ(m j=0)

↑s̄/V (~k′⊥, x
′)
{ 2

√
x(1 − z)√

[x + z(1 − x)]3
(kR −

x
z
∆R) +

2
z

√
x(1 − z)

x + z(1 − x)
qR

}
+ ψ∗

↑s̄/P(~k⊥, x)ψ(m j=0)
↓s̄/V (~k′⊥, x

′)
2mqz√

x(1 − z)[x + z(1 − x)]3

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j=0)

↓s̄/V (~k′⊥, x
′)
{ 2
√

x(1 − z)[x + z(1 − x)]
(kR −

x
z
∆R) +

2
z

√
x(1 − z)

x + z(1 − x)
qR

}}

(2.95)

We can further simplify the expression by taking advantage of the symmetries in the light-front wave-

functions,

ψ
(m j=0)
↑↑/V

(~k⊥, x) = −ψ
(m j=0)∗
↓↓/V

(~k⊥, x), ψ↑↑/P(~k⊥, x) = ψ∗
↓↓/P(~k⊥, x),

ψ
(m j=0)
↑↓/V

(~k⊥, x) = ψ
(m j=0)
↓↑/V

(~k⊥, x), ψ↑↓/P(~k⊥, x) = −ψ↓↑/P(~k⊥, x) .
(2.96)

This leads to a partial cancellation of the first and the third terms in Eq. (2.95) and reduces it to,

V̂ |JR,m j=0(q2)

= − i
mV + mP
2mV∆R

∑
s̄

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

2√
x(1 − z)[x + z(1 − x)]3

×
[
ψ∗
↑s̄/P(~k⊥, x)ψ(m j=0)

↑s̄/V (~k′⊥, x
′)(zkR − x∆R) + ψ∗

↑s̄/P(~k⊥, x)ψ(m j=0)
↓s̄/V (~k′⊥, x

′)mqz
]

= − i
mV + mP
2mV∆R

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

2√
x(1 − z)[x + z(1 − x)]3

×
[
[
1
2
ψ∗
↑↓−↓↑/P(~k⊥, x)ψ(m j=0)

↑↓+↓↑/V
(~k′⊥, x

′) + ψ∗
↑↑/P(~k⊥, x)ψ(m j=0)

↑↑/V
(~k′⊥, x

′)](zkR − x∆R)

+
1
√

2
[ψ∗
↑↑/P(~k⊥, x)ψ(m j=0)

↑↓+↓↑/V
(~k′⊥, x

′) + ψ∗
↑↓−↓↑/P(~k⊥, x)ψ(m j=0)

↓↓/V
(~k′⊥, x

′)]mqz
]
.

(2.97)

In the second equality, we adopt the notations of spin configurations as ψ↑↓±↓↑ ≡ (ψ↑↓±ψ↓↑)/
√

2. This

would be convenient to study the non-relativistic limit. According to Eq. (2.97), the transition form

factor can be evaluated as a function of z and ∆⊥.
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3. JR/L and m j = ±1

According to our discussion, these four choices should give the same result based on the symmetry in

the transverse plane. However, this ”equivalence” is not very explicit in the light-front wavefunction

representation, and we see two pairs of choices.

The first pair contains these two extractions: (JR and m j = 1) and (JL and m j = −1).

V̂ |JR,m j=1(q2)

=
i(mV + mP)
√

2P′R∆R
〈P(P)| JR

q (0) |V(P′,m j = 1)〉

=
i(mV + mP)
√

2P′R∆R

∑
s̄

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

×

{
ψ∗
↑s̄/P(~k⊥, x)ψ(m j=1)

↑s̄/V (~k′⊥, x
′)

2
√

x(1 − z)[x + z(1 − x)]
(kR + (1 − x)∆R + [x + z(1 − x)]P′R)

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j=1)

↑s̄/V (~k′⊥, x
′)

2mqz√
x(1 − z)[x + z(1 − x)]3

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j=1)

↓s̄/V (~k′⊥, x
′)

2
√

x(1 − z)√
[x + z(1 − x)]3

(kR + x(1 − z)P′R − x∆R)
}
.

(2.98)

Unlike extracting the transition from factor with the first two choices as in Eqs. (2.94) and (2.97),

fixing the values of z and ∆⊥ could not uniquely determine the transition form factor in Eq. (2.98).

There is an extra dependence on the transverse momentum, ~P⊥, or equivalently on ~P′⊥ or ~q⊥. This

implies that the transition form factor extracted this way is not invariant under the transverse boost.

To investigate such dependence, we calculate the transition form factor of J/ψ→ ηcγ by letting z = 0

(this is the same as choosing the Drell-Yan frame, see the definition of frames in Section 2.2.1) and

varying the value of PR. Note that by setting z = 0, ~∆⊥ becomes ~q⊥, and q2 should be determined

directly from the value of ~∆⊥ as q2 = −|~∆⊥|
2. For convenience, we define the transverse momentum

fraction ξ such that P′R = ξ∆R. Note that ξ can be any complex number, and here we consider its

real domain of −∞ < ξ < +∞ for simplicity. We could thereby extract the transition form factor

numerically as a function of q2 and ξ according to Eq. (2.98). It is noticeable that in the limit of

ξ → ±∞, Eq. (2.98) reduces to Eq. (2.94), that is to say, limξ→±∞ V̂ |JR,m j=1(q2) = V̂ |J+,m j=1(q2). From

the results in Fig. 2.11, we see a dramatic dependence of V̂ |JR,m j=1(q2) on ξ. This might imply that
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the extraction V̂ |JR,m j=1(q2) is heavily affected by the Fock space truncation and should not be used in

practical calculations.

J/ψ→ηc+γ
ξ
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V
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j=
1
(Q

2
)

Figure 2.11 The transition form factor of J/ψ → ηc(1S ) + γ calculated according to Eq. (2.98)
at z = 0 with different values of ξ = PR/∆R. In this plot, Q2 ≡ −q2 = −|~∆⊥|

2, and
V̂ |JR,m j=1 (V̂ |J+,m j=1) is labeled as V̂R

m j=1 (V̂+
m j=1). In the limit of ξ → ±∞, V̂ |JR,m j=1(q2)

reduces to V̂ |J+,m j=1(q2), and it is shown in the red solid line. The light-front wave-
functions used in this calculation are obtained through the BLFQ approach in Ref. [3].

The second pair contains (JR and m j = −1) and (JL and m j = 1).

V̂ |JR,m j=−1(q2)

=
i
√

2(1 − z)
m2
P
− (1 − z)2m2

V
− PR∆L

〈P(P)| JR
q (0) |V(P′,m j = −1)〉

=
i
√

2(1 − z)
m2
P
− (1 − z)2m2

V
− ((1 − z)P′R − ∆R)∆L

∑
s̄

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

×

{
ψ∗
↑s̄/P(~k⊥, x)ψ(m j=−1)

↑s̄/V (~k′⊥, x
′)(kR + (1 − x)∆R + [x + z(1 − x)]P′R)

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j=−1)

↑s̄/V (~k′⊥, x
′)

2mqz√
x(1 − z)[x + z(1 − x)]3

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j=−1)

↓s̄/V (~k′⊥, x
′)(kR + x(1 − z)P′R − x∆R)

}

(2.99)
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This formalism of extracting the transition form factor also has the problematic dependence on P′R,

and is therefore not practical to use.

4. J− and m j = 0

In this combination, the light-front wavefunction representation of the transition form factor reads,

V̂ |J−,m j=0(q2) =
−iP+

mV(∆RPL − ∆LPR)

∑
s̄

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

1
x′

2
√

x′P′+xP+

×

[
ψ∗
↑s̄/P(~k⊥, x)ψ(m j=0)

↑s̄/V (~k′⊥, x
′)[m2

q + (k′R + x′P′R)(kL + xPL)]

+ ψ∗
↑s̄/P(~k⊥, x)ψ(m j=0)

↓s̄/V (~k′⊥, x
′)mq(kL + xPL − k′L − x′P′L)

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j=0)

↑s̄/V (~k′⊥, x
′)mq(k′R + x′P′R − kR − xPR)

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j=0)

↓s̄/V (~k′⊥, x
′)[m2

q + (k′L + x′P′L)(kR + xPR)]
]
,

(2.100)

We can simplify this expression by applying the symmetries in the light-front wavefunctions in

Eq. (2.96).

V̂ |J−,m j=0(q2) =
−i

mV(∆RPL − ∆LPR)

∑
s̄

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

2
√

1 − z√
x[x + z(1 − x)]3

×

[
ψ∗
↑s̄/P(~k⊥, x)ψ(m j=0)

↑s̄/V (~k′⊥, x
′)2i[(k′y + x′P′y)(kx + xPx) − (k′x + x′P′x)(ky + xPy)]

+ ψ∗
↑s̄/P(~k⊥, x)ψ(m j=0)

↓s̄/V (~k′⊥, x
′)(−2i)mq(ky + xPy − k′y − x′P′y)

]
,

(2.101)

As in Eq. (2.98), fixing the values of z and ∆⊥ could not uniquely determine the transition form factor

in Eq. (2.98). There is an extra dependence on the transverse momentum of the initial state, ~P′⊥. This

implies that the transition form factor extracted this way is not invariant under the transverse boost.

5. J− and m j = ±1

With this combination, we see the extra dependence of the transition form factor on the transverse
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momentum, again.

V̂ |J−,m j=1(q2) =
−i
√

2P+P′+

P′+P′R(m2
P
− PL∆R) − P+PRm2

V

∑
s̄

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3

1
x′

2
√

x′P′+xP+

×

[
ψ∗
↑s̄/P(~k⊥, x)ψ(m j=1)

↑s̄/V (~k′⊥, x
′)[m2

q + (k′R + x′P′R)(kL + xPL)]

+ ψ∗
↑s̄/P(~k⊥, x)ψ(m j=1)

↓s̄/V (~k′⊥, x
′)mq(kL + xPL − k′L − x′P′L)

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j=1)

↑s̄/V (~k′⊥, x
′)mq(k′R + x′P′R − kR − xPR)

+ ψ∗
↓s̄/P(~k⊥, x)ψ(m j=1)

↓s̄/V (~k′⊥, x
′)[m2

q + (k′L + x′P′L)(kR + xPR)]
]
,

(2.102)

To summarize, only two combinations of the current component and the magnetic projection of the vec-

tor meson could unambiguously extract the transition form factor from the valence hadron matrix element:

they are V̂ |JR/L,m j=0(q2) in Eq. (2.95) and V̂ |J+,m j=±1(q2) in Eq. (2.94). The other choices are not invariant

under the transverse boost, and are therefore not very useful for calculating the transition form factor.

2.3.2.1 The nonrelativistic limit of V̂ |JR,m j=0 and V̂ |J+,m j=1

From the above discussions, we see that using JR with m j = 0 and using J+ with m j = 1 are the two

possible choices of extracting the transition form factor in the valence Fock space. Though, in principle,

these two choices should be equivalent due to Lorentz covariance, adoption of certain approximations in the

model may lead to violation of the Lorentz symmetry that would be evident through nonequivalent results.

In this section, we will further study these two choices and in particular their nonrelativistic limits.

In nonrelativistic quantum mechanics, magnetic moments and transitions can only be extracted from the

current density ~J = (Jx, Jy, Jz) rather than the charge density J0. Therefore one may expect that for the M1

transitions in nonrelativistic systems such as heavy quarkonia, the transverse current density ~J⊥ could be

better than the charge density J+. Indeed, V̂ |J+,m j=1 does not involve spin-flip between the initial and final

states, as in Eq. (2.94), while V̂ |JR,m j=0 includes such contribution as in Eq. (2.95).

In the nonrelativistic limit, the M1 transition with the same radial and angular quantum numbers (e.g.

V(nS ) → P(nS ) + γ), is often referred to as allowed, for which the transition amplitude is large and

V̂(0) → 2 as a result of the similarity between the spatial wavefunctions of the vector and the pseudoscalar

mesons with the same spatial quantum numbers; whereas the transition between states with different radial
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or angular excitations is referred to as hindered, for which the transition amplitude is zero and V̂(0) → 0

at the leading order due to the orthogonality of the wavefunctions [114, 103, 115, 116]. The deviations of

experimentally measured results from those nonrelativistic limits indicate relativistic effects [2]. For a heavy

quarkonium system, which is close to the nonrelativistic domain, such deviations are expected to be small

but nonzero.

The wavefunctions of heavy quarkonia, treated as relativistic bound states, are dominated by those com-

ponents that are non-vanishing and reduce to the nonrelativistic wavefunction in the nonrelativistic limit.

These wavefunction components are therefore referred to as the dominant components. It is necessary to

emphasize that despite the correspondence between the dominant spin components and the nonrelativistic

wavefunctions, the former carries relativistic contributions when solved in a relativistic formalism. There

are also wavefunction components of purely relativistic origin, which vanish in the nonrelativistic limit and

are therefore subdominant.

In practice, the dominant components tend to be better constrained, while the subdominant ones are

more sensitive to the model and numerical uncertainties. For the pseudoscalar states resembling S-waves

(in particular n1S 0), ηc(nS ) and ηb(nS ), their dominant components are the spin-singlets ψ↑↓−↓↑/P, while

relativistic treatments would also allow them to have subdominant components, such as ψ↑↑/P = ψ∗
↓↓/P

.

Analogously, for the vector states of heavy quarkonia resembling S-waves (in particular n3S 1), ψ(nS ) and

Υ(nS ), the dominant components are the spin-triplets, ψm j=0
↑↓+↓↑/V

, ψm j=1
↑↑/V

and ψm j=−1
↓↓/V

. For those vector states

identified as D-waves, ψ(n3D1) and Υ(n3D1), where orbital excitations occur, all the spin-triplet components

ψ
m j=0,±1
↑↓+↓↑/V

, ψm j=0,±1
↑↑/V

and ψ
m j=0,±1
↓↓/V

exist in the nonrelativistic limit and are considered dominant, and only

the spin-singlet components ψm j=0,±1
↑↓−↓↑/V

are subdominant. In detail, the spin components with larger orbital

angular momentum projection m` = m j − s − s̄, ψm j=0
↑↑/V

= −ψ
∗m j=0
↓↓/V

(m` = ±1) and ψm j=1
↓↓/V

(m` = 2), have the

largest occupancy. The less occupied components, ψm j=0
↑↓+↓↑/V

(m` = 0), ψm j=1
↑↓+↓↑/V

(m` = 1) and ψm j=1
↑↑/V

(m` = 0),

could also exist in the nonrelativistic limit. Moreover, the spin components with m` = 0 admit the admixtures

of S-waves, though the actual amount of such admixtures is small and sensitive to both the model parameters

and the truncation. For example, the ψ(3770) [ψ(1D)] state, though primarily a 13D1 state, has contributions

from n3S 1 states (notably 23S 1) [117, 118, 119, 120], and these S-wave admixtures are responsible for the
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nD → n′S + γ transitions [121, 122, 123, 116]. In order to have a more intuitive view of the dominant and

subdominant spin components for those states, we take the LFWFs from Ref. [3] to show in Fig. 2.12 the

proportions of those dominant and subdominant components of heavy quarkonia. For all those pseudoscalar

and vector states, the dominant terms could each occupy 88% ∼ 100% of the whole LFWF, suggesting

that the heavy quarkonium indeed resembles a nonrelativistic system. The comparison between the same

states of the charmonium and those of the bottomonium also reveals that the dominant component is more

pronounced in the heavier, and less relativistic, system.
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Figure 2.12 Comparison of dominant and subdominant LFWF components for pseudoscalar and
vector systems in heavy quarkonia. Single (double) apostrophe stands for the radial
excited 2S (3S) state. LFWFs are taken from the Nmax = Lmax = 32 result of Ref. [3].
The numbers in white suggest the occupancy of the dominant spin components for
each state. (Figure adopted from Ref. [9].)
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It follows that in calculating the transition form factors, we can examine the two procedures, V̂ |JR,m j=0(q2)

presented in Eq. (2.95) and V̂ |J+,m j=1(q2) presented in Eq. (2.94), in terms of their proximities to the nonrel-

ativistic domain. The result of V̂ |JR,m j=0(q2) mainly comes from the overlap of the dominant components,

ψ
(m j=0)
↑↓+↓↑/V

ψ∗
↑↓−↓↑/P

, whereas even the major part of V̂ |J+,m j=1(q2) involves the subdominant components, such

as ψ(m j=1)
↑↑/V

ψ∗
↑↑/P

and ψ(m j=1)
↑↓−↓↑/V

ψ∗
↑↓−↓↑/P

. In heavy quarkonium, the dominant components tend to be better

constrained than the subdominant ones which suggests that V̂ |JR,m j=0(q2) is more robust than V̂ |J+,m j=1(q2).

The nonrelativistic limit at q2 = 0 can be achieved for V̂ |JR,m j=0(q2) by adopting nonrelativistic wave-

functions where only the dominant spin components exist. However, with V̂ |J+,m j=1(q2), simply taking the

nonrelativistic wavefunction would always lead to zero since the expression in Eq. (2.94) involves the sub-

dominant terms. To be specific, we examine the transition form factors at q2 = 0 by taking z = 0 and

~∆⊥ = ~0⊥, where they can be interpreted as the overlaps of wavefunctions in coordinate space [ψ̃(m j)
ss̄ (~r⊥, x)],

shown in Eqs. (2.103) and (2.104). Though equivalent to Eqs. (2.95) and (2.94) at q2 = 0 respectively,

Eqs. (2.103) and (2.104) do not have the complicating factor of 1/∆R, and are therefore more intuitive for

the purpose of illustration.

V̂ |JR,m j=0(0) =

∫ ∞

0
dr⊥

{mP + mV
4πmV

∫ 1

0
dx

∫ 2π

0
dθ

r⊥
x

× [−
1
2
ψ̃

(m j=0)
↑↓+↓↑/V

(r⊥, θ, x)ψ̃∗
↑↓−↓↑/P(r⊥, θ, x) − ψ̃(m j=0)

↑↑/V
(r⊥, θ, x)ψ̃∗

↑↑/P(r⊥, θ, x)]
} (2.103)

V̂ |J+,m j=1(0) =

∫ ∞

0
dr⊥

{ √2(mP + mV)

4π

∫ 1

0
dx

∫ 2π

0
dθ (1 − x)r2

⊥ cos θ

×
∑
s,s̄

ψ̃
(m j=1)
ss̄/V (r⊥, θ, x)ψ̃∗ss̄/P(r⊥, θ, x)

} (2.104)

Note that in the nonrelativistic limit, the wavefunctions of the respective pseudoscalar and vector states

with the same radial and angular numbers are identical in their spatial dependence, and they only differ in

their spin structures. For the allowed transition, V̂ |JR,m j=0(0) → 2 due to the normalization of the spatial

wavefunctions, which can be seen from Eq. (2.103) along with taking x→ 1/2 + kz/(2mq) [3] and small hy-

perfine splitting mP ≈ mV. For the hindered transition, V̂ |JR,m j=0(0)→ 0 due to the orthogonality of the two

wavefunctions. Such a nonrelativistic reduction that takes advantage of the near orthonormality of wavefunc-

tions is reminiscent of the nonrelativistic quark model (see Refs. [114, 103, 115]). However, for V̂ |J+,m j=1(0),

the realization of the nonrelativistic limits depends strongly on the details of the subdominant wavefunctions
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which are less constrained in the parameter fitting. For the hindered transition, where cancellation occurs,

this leads to a strong sensitivity to the truncations and to the model parameters. Fig. 2.13 presents the in-

tegrands (those inside {. . .}) of V̂ |JR,m j=0(0) and V̂ |J+,m j=1(0) according to Eqs. (2.103) and (2.104) for an

allowed (1S → 1S + γ) as well as a hindered (2S → 1S + γ) transition. In the left panel of Fig. 2.13, the

integrands of the allowed transition have no nodes resulting from the coherent overlaps of the two wave-

functions. On the other hand, the right panel of Fig. 2.13 shows significant cancellations of contributions

from the integrands which change sign due to nodes in the 2S wavefunctions.
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(b) ηc(2S )→ J/ψ(1S ) + γ

Figure 2.13 Integrands of V̂(0) according to Eqs. (2.103) (JR,m j = 0) and (2.104) (J+,m j = 1).
As a representative of the allowed (nS → nS + γ) transitions, the integrand in (a)
has the same sign in the entire r⊥ region. On the other hand, (b) involves a transition
with radial excitation, which is sensitive to small changes in the cancellations between
positive and negative contributions. (Figure adapted from Ref. [9])

Based on these lines of reasoning, we suggest using the transverse current with m j = 0, i.e. V̂ |JR,m j=0(q2)

as in Eq. (2.95), to evaluate the transition form factors for heavy quarkonia in the valence Fock space.

In general, such as for light mesons, one could calculate both V̂ |JR,m j=0(q2) and V̂ |J+,m j=1(q2) and use the

difference of the two as an certainty to quantify the violation of the Lorentz symmetry.
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2.3.2.2 Results: applications to heavy quarkonia

Now we apply the formalism of calculating the M1 transition form factor to the heavy quarkonia system.

We adopt wavefunctions of heavy quarkonia from the work of Ref. [3] using the BLFQ approach [1]. The

numerical calculations in this section are carried out with z = 0, i.e. in the Drell-Yan frame. We will study

the effects of the reference frames in the next section.

We first compare the two choices of extracting the transition form factors, V̂ |JR,m j=0 and V̂ |J+,m j=1.

Fig. 2.14 shows the numerical results of four representative transitions in the charmonia system. There

are noticeable differences between the two ways of extracting the transition form factor, especially for the

hindered transitions. As already mentioned, we expect the calculation from V̂ |JR,m j=0 to be more robust,

since it depends on the dominant components of the wavefunctions.

We then present our results for selected pseudoscalar-vector transition form factors for charmonia and

bottomonia below their respective open flavor thresholds with the preferred procedure V̂ |JR,m j=0(q2) as in

Eq. (2.95). Fig. 2.15 shows our numerical results of the transition form factors in three groups, the allowed

transition nS → nS +γ, the radial excited transition nS → n′S +γ (n , n′) and the angular excited transition

nD → n′S + γ, through a progression from upper to lower panels. As already discussed in the previous

section, for the allowed transitions we find V̂(0) ≈ 2, whereas for the hindered transitions involving either

radial or angular excitations we have V̂(0) ≈ 0. Transitions involving higher radial excited states feature

more wiggles in the curve, which is especially evident in the nS → nS + γ transitions as n increases. This

is because the radial excited states have transverse nodes. As a result, the transition form factors, in the

form of their convolutions [see Eq. (2.95)], are not monotonic. The comparison between charmonia and

bottomonia is also of interest. For comparable transition modes, the transition form factors show similarity

in their patterns as well as their behavior as a function of Nmax. Furthermore, as illustrated in the second row

of panels in Fig. 2.15, one observes that the P(nS )→V(n′S ) + γ transition form factors are very similar to

theV(nS )→ P(n′S ) + γ form factors for n > n′.

Comparisons of V̂(0) from our calculations, with experiments (compiled by PDG [4]) and with other

models (Lattice QCD [11, 12, 13, 14, 15], Quark Model [6, 7, 8]) are collected in Table 2.9 and visualized in

Fig. 2.16. Most calculations, as well as available experimental data, give a value of the the order of 2 for the
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Figure 2.14 Transition form factors calculated from light-front wavefunctions [3] according to
Eqs. (2.95) (JR,m j = 0) and (2.94) (J+,m j = 1). The dashed and solid curves are
calculated with light-front wavefunctions at Nmax = Lmax = 8 and Nmax = Lmax = 32
respectively. The shaded areas in between indicates the numerical uncertainty from
basis truncation.
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Figure 2.15 Transition form factors for charmonia (left) and bottomonia (right) are calculated
from the BLFQ light-front wavefunctions [3] according to Eq. (2.95). In these plots,
Q2 = −q2. The first row shows the allowed transitions, the second row shows transi-
tions between different radial excitations, and the third row presents those involving
angular excitations. The dashed and solid curves are calculated with light-front wave-
functions at Nmax = Lmax = 8 and Nmax = Lmax = 32 respectively. The shaded areas in
between indicates the numerical uncertainty from basis truncation. As a consequence
of the UV cutoff from the basis, the largest Q2(' Λ2

uv) at Nmax = 32 truncation is
31 GeV2 (44 GeV2) for charmonia (bottomonia). (Figure adopted from Ref. [9])
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allowed transitions nS → nS +γ: All such data in Table 2.9 are between 1.5 and 2.5 with only one exception,

the relativistic quark model calculation of J/ψ → ηc + γ. This is in agreement with the vector V(nS ) and

the pseudoscalar P(nS ) mesons possessing very similar spatial wavefunctions, but different spin structures.

On the other hand, there is a significant spread in the theoretical results of the hindered transitions. This is

expected because the hindered transitions involve changes in radial quantum numbers and/or orbital angular

motions and are sensitive to delicate cancellations as discussed above. Considering the fact that only two

free parameters are employed by the model for quarkonia in Ref. [3] and the fact that we did not adjust any

parameters in our calculation for the transitions, the qualitative agreement with experiment and results from

other methods is encouraging.
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heavy quark limit for nS→nS

Figure 2.16 V̂(0) of charmonia and bottomonia transitions, calculated from Eq. (2.95) and summa-
rized in Table. 2.9. Extrapolations are made from Nmax = Lmax = 8, 16, 24, 32 using
second-order polynomials in N−1

max. We use the difference between the extrapolated
and the Nmax = 32 results to quantify numerical uncertainty which is indicated by the
vertical error bars on the BLFQ results (sometimes smaller than the symbols). We do
not include any systematic uncertainty. Quarkonia in the initial and final states are
labeled on the top and bottom of the figure. Single (double) apostrophe stands for
the radial excited 2S (3S) state. The D-wave states are identified as n3D1. The heavy
quark limit V̂(0) = 2 of the allowed (nS → nS + γ) transition is shown in the dashed
line. Results from PDG [4], Lattice QCD [11, 12, 13, 14] and Lattice NRQCD [15, 5],
the relativistic quark model (rQM) [6] and the Godfrey-Isgur (GI) model [7, 8] are
also presented for comparison. (Figure adopted from Ref. [9])
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Table 2.9 V̂(0) for radiative decay between 0−+ and 1−− charmonia (bottomonia) below the DD
(BB) threshold. Values from PDG [4] are converted from their decay widths according
to Eq. (2.81). Note that the uncertainties of meson masses propagate into that of V̂(0).
The BLFQ results are from Eq. (2.95). For these results, all meson masses are taken
from PDG [4], except that Υ(13D1), Υ(23D1) and ηb(3S ) masses are taken from Ref. [3].
Extrapolations for BLFQ are made from Nmax = Lmax = 8, 16, 24, 32 using second-order
polynomials in N−1

max. We use the difference between the extrapolated and the Nmax = 32
results to quantify numerical uncertainty, which does not include any systematic uncer-
tainty. Uncertainties are quoted in parenthesis and apply to the least significant figures of
the result. Some lattice results are quoted with more than one source of uncertainty. The
lattice nonrelativistic QCD (NRQCD) [5] results are converted from their three-point
matrix elements with meson masses from PDG [4]. Values from the relativistic quark
model (rQM) [6] and the Godfrey-Isgur (GI) model [7, 8] are converted from their decay
widths according to Eq. (2.81) with their suggested meson masses, respectively. These
results are plotted in Fig. 2.16. (Table adapted from Ref. [9])

V̂(0) PDG [4] BLFQ
Lattice [11, 12, 13, 14, 15, 5] Quark Model
Dudek Bečirević HPQCD NRQCD rQM GI

J/ψ(1S )→ ηc(1S )γ 1.56(19) 1.99(3) 1.89(3) 1.92(3)(2) 1.90(7)(1) 1.21 1.82
ηc(2S )→ J/ψ(1S )γ 0.056(38) 0.32(6)(2) 0.099 0.20
ψ(2S )→ ηc(1S )γ 0.100(8) 0.360(74) 0.062(64) 0.097 0.31
ψ(2S )→ ηc(2S )γ 2.52(91) 2.03(6) 2.01 2.18
ψ(13D1)→ ηc(1S )γ < 0.377 0.035(2) 0.27(15)
ψ(13D1)→ ηc(2S )γ < 5.84 0.121(21)

Υ(1S )→ ηb(1S )γ 2.00(1) 1.48 1.87
ηb(2S )→ Υ(1S )γ 0.080(27) 0.11(1) 0.050 0.12
ηb(3S )→ Υ(1S )γ 0.033(12) 0.078(10) 0.036 0.061
Υ(2S )→ ηb(1S )γ 0.070(14) 0.156(30) 0.081(13) 0.062(10) 0.050 0.17
Υ(2S )→ ηb(2S )γ 2.01(1) 2.17 1.99
ηb(3S )→ Υ(2S )γ 0.059(27) 0.057 0.099
Υ(13D1)→ ηb(1S )γ 0.0052(4)
Υ(13D1)→ ηb(2S )γ 0.0148(61)
Υ(13D1)→ ηb(3S )γ 0.021(4)
Υ(3S )→ ηb(1S )γ 0.035(3) 0.079(10) 0.025(13) 0.035 0.084
Υ(3S )→ ηb(2S )γ < 0.167 0.145(33) 0.056 0.65
Υ(3S )→ ηb(3S )γ 2.04(1) 1.99 2.06
Υ(23D1)→ ηb(1S )γ 0.010(1)
Υ(23D1)→ ηb(2S )γ 0.010(2)
Υ(23D1)→ ηb(3S )γ 0.018(3)
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We also compare the two choices of extracting the transition form factors, V̂ |JR,m j=0 and V̂ |J+,m j=1 through

V̂(0). The ratios of V̂ |J+,m j=1(0) over V̂ |JR,m j=0(0) are presented in Fig. 2.17. The hindered transitions have a

much larger fluctuation than the allowed transition, due to their sensitivity to the subdominant components in

one of the two spatial wavefunctions with different radial quantum numbers and/or different orbital motions.

The results with the J+ current, V̂ |J+,m j=1(0), differ by up to 2 orders of magnitude from the more reliable

results with the transverse component of the current, V̂ |JR,m j=0(0).
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Figure 2.17 Ratio of V̂ |J+,m j=1(0) over V̂ |JR,m j=0(0), calculated from Eq. (2.94) and Eq. (2.95) re-
spectively. The results are extrapolated to Nmax = ∞ from Nmax = Lmax = 8, 16, 24, 32
using second-order polynomials in N−1

max. We use the difference between the extrap-
olated and the Nmax = 32 results to quantify the numerical uncertainty (indicated by
vertical error bars). The allowed transitions are shown as filled triangles, whereas
the hindered transitions, involving radial/angular excitations, are shown as open dia-
monds. (Figure adopted from Ref. [9])

2.3.3 Frame dependence of the transition form factor

The dependence of the transition form factor on the current components and on the reference frame are

two typical measures of the violation of the Lorentz covariance in light-front dynamics. In Section 2.3.2,

we have shown that for calculations with light-front wavefunctions in the valence Fock sector, using the

transverse current JR with the m j = 0 state of the vector meson is preferred for the transition form factor
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V(q2), as in Eq. (2.95). We will take this choice for the purpose of studying the frame dependence in this

section.

Studies in the literature have revealed that the elastic and transition form factors could have different

results when evaluated in different reference frames [124, 72, 125, 78, 65]. Such frame dependence is

closely related to the Fock-space truncation that omits the non-valence contributions. In Sec. 2.2.1, we have

defined a parameter space of (z, ~∆⊥) to describe frames. There, different choices of (z, ~∆⊥) for the same q2

could characterize different frames. We will therefore calculate the frame dependence of the transition form

factor through a dense sampling on the (z, ~∆⊥) space.

Let us first analyze the potential effects of choosing different frames by looking into the light-front wave-

function representation of the hadron matrix elements, which are derived in Section 2.2.2. We immediately

find that z is the lower bound of the range of x′1 for the n→ n matrix element in Eq. 2.35. As a consequence,

increasing the value of z would reduce the overlap region of the two wavefunctions in the longitudinal direc-

tion. We illustrate this effect in Fig. 2.18 by visualizing the convoluted valence wavefunctions [3] at different

(z, ~∆⊥) with the same q2 for the transition J/ψ→ ηc + γ(∗). In the valence Fock sector, the light-front wave-

function can be written in the form of ψ(m j)
ss̄/h(~k⊥, x) where (x,~k⊥) is the relative coordinates of the quark.

s represents the fermion spin projection in the x− direction. Both the initial and final wavefunctions are

plotted in the same (x,~k⊥) space, where the initial state wavefunction would appear as being reshaped due

to momentum transfer. We can see that the information from the wavefunction in the longitudinal direction

is preserved best at minimal z.

For the n + 2 → n term, as in Fig. 2.5(b), a quark and an antiquark from the initial state annihilate

into a photon. The light-front wavefunction representation of the hadron matrix element is in Eq. (2.46).

The frame parameter z is now the upper bound of the range of x′1, suggesting that decreasing the value of z

might reduce the contribution of the n + 2→ n transition to the full transition form factor. However, even at

z = 0, this parton-number-non-conserving term may yield a non-zero value, by generating zero-mode δ(x)

terms [126, 81, 71, 72]. In the space-like region, the Drell-Yan frame always has the minimal z = 0. In the

time-like region, it is the longitudinal-II frame that takes the smallest z. When the n + 2→ n contribution is

not accessible, which happens when the light-front wavefunctions are solved in a truncated Fock space, using
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those minimal-z frames seems advantageous in suppressing the parton-number-non-conserving contribution.

This observation suggests optimal frames for our meson systems solved from light-front Hamiltonian in the

valence Fock sector.

(a) ψ
(m j=0)
↑↓+↓↑/J/ψ(x′ = x + z(1 − x),~k′⊥ = ~k⊥ + (1 − x)~∆⊥)

0

5

10

15

(b) ψ
(m j=0)
↑↓−↓↑/ηc

(x,~k⊥)

Figure 2.18 The valence light-front wavefunctions of mesons as they contribute (see Eq. (2.35))
to the convolution in the transition J/ψ → ηc + γ(∗) at q2 = −3 GeV2 in different
frames. According to Eq. (2.35), in this 2 → 2 parton-number-conserving term, the
initial state wavefunction of J/ψ would appear shifted and stretched to overlap with
the final state wavefunction of ηc, when plotted on the (x,~k⊥) space. Shown in (a), the
wavefunction of J/ψ is shaped differently at different (z, ~∆⊥), i.e. in different frames.
The longitudinal dimension is preserved most in the Drell-Yan frame where z = 0. At
larger z, the information in the longitudinal region is reduced, and the transverse shift
becomes smaller. The largest z is achieved when ∆⊥ = 0 in the longitudinal frame, in
this case, z = 0.45. Plotted in (b) is the wavefunction of ηc. All light-front wavefunc-
tions what we employ are calculated by Ref. [3] and here we only plot the dominant
spin components for the purpose of illustration. (Figure adapted from Ref. [10])

2.3.3.1 Results: applications to heavy quarkonia

We adopt light-front wavefunctions of heavy quarkonia from recent works [48, 3] in the BLFQ ap-

proach [1]. We calculate the frame dependence of the transition form factor through a dense sampling on

the (z, ~∆⊥) space.

Figures 2.19, 2.20 and 2.21 show numerical results for selected pseudoscalar-vector transition form fac-

tors for charmonia and bottomonia below their respective open-flavor thresholds. Those lowest states are the

primary foci of several investigations [127, 15, 14, 12, 114, 8]. They have been measured in experiments [2],

and their transitions are more readily detected with good statistics than higher excited states. Moreover, with
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their experimental masses, we have an entire landscape of frames in the (z, ~∆⊥) parameter space according

to Eq. (2.30). The solid curve represents the Drell-Yan frame, the dotted and the dashed curves represent

the two branches of the longitudinal frame, longitudinal I and longitudinal II respectively. The shaded areas

represent all other frames with different z and ∆⊥. We also compare V̂(0) obtained in different frames with

available experimental data from the Particle Data Group (PDG) [2] in Table. 2.10.

Table 2.10 Comparison of V̂(0) from available experimental data and the BLFQ calculations in the

limiting frames. Values from PDG [2] are converted from their decay widths according

to Eq. (2.81). The BLFQ results are calculated using meson wavefunctions obtained

at Nmax = Lmax = 32. The Drell-Yan/longitudinal II is the preferred result, and the

difference between it and the longitudinal I quantifies the uncertainty resulting from

frame dependence. (Table adapted from Ref. [10])

V̂(0) PDG [2]
BLFQ

Drell-Yan/long-II long-I

J/ψ(1S )→ ηc(1S )γ 1.56(19) 2.02 2.12

ηc(2S )→ J/ψ(1S )γ · · · −0.019 0.29

ψ(2S )→ ηc(1S )γ 0.100(8) 0.29 0.46

ψ(2S )→ ηc(2S )γ 2.52(91) 2.09 2.14

ψ(1D)→ ηc(1S )γ < 0.377 0.033 0.44

Υ(1S )→ ηb(1S )γ · · · 2.01 2.03

ηb(2S )→ Υ(1S )γ · · · −0.052 0.20

Υ(2S )→ ηb(1S )γ 0.070(14) 0.13 0.35

Υ(2S )→ ηb(2S )γ · · · 2.02 2.03

Υ(1D)→ ηb(1S )γ · · · 0.0048 0.19

For the transition form factor of the allowed transition, i.e. ψA(nS )→ ψB(nS )γ, (ψA, ψB = V,P or P,V),

as in Fig. 2.19, there are no crossings between the curves of the longitudinal frame and the Drell-Yan frame.

In these cases, the results from all other frames are represented by the enclosed shaded area. The frame
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dependence is relatively small, no more than a 5% spread at q2 = 0, as in Table. 2.10. For the transition

form factor of the hindered transitions, i.e. ψA(nS ) → ψB(n′S )γ(n′ , n), (ψA, ψB = V,P or P,V), as in

Fig. 2.20, the curves of the longitudinal frame and the Drell-Yan frame cross each other, and their joined

lower bound forms the lower bound for the results from all other frames. The upper bound, however, en-

velops the Drell-Yan and the longitudinal results. The frame dependence of these hindered transitions is very

strong, indicating major sensitivity to the Lorentz symmetry breaking. This sensitivity seems understand-

able since these weaker transitions result from cancellations coming from different regions of integration.

Transition form factors of the hindered transitions with angular excitations, V(1D) → P(1S )γ is shown in

Fig. 2.21.

We also compare charmonia and bottomonia at corresponding transition modes in Figures 2.19, 2.20

and 2.21. Such comparisons suggest that the frame dependence tends to be reduced for heavier systems,

presumably due to the overall reduction in relativistic effects.

It is natural to ask how frame dependence may be sensitive to the BLFQ basis truncation applied to these

valence Fock space calculations. For this purpose, we present transition form factors from different basis

truncations in Fig. 2.22. A trend towards convergence with increasing basis cutoff is observed in both the

Drell-Yan and the longitudinal frames. The frame dependence indicated by the shaded regions is shrinking

slightly with increasing basis cutoff but Lorentz symmetry breaking effects remain visible even at the highest

basis cutoffs.

From those results, we observe that the frame dependence of the transition form factor can be character-

ized by the two limits, the Drell-Yan and the longitudinal frames. Transitions with excitations in the lighter

system (e.g. ηc(2S )→ J/ψ(1S )γ) admit the largest frame dependence, implying a stronger sensitivity to the

Fock sector truncation. Our suggested frames for the calculation in the valence Fock sector, the Drell-Yan

and the longitudinal-II frames, provide values of V̂(0) that are closer to the experimental data, as seen in

Table. 2.10.
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Figure 2.19 The transition form factor of the transition V(nS ) → P(nS )γ of charmonia (blue
curves/shades) and bottomonia (red curves/shades), calculated with light-front wave-
functions at Nmax = Lmax = 32 basis truncation. Meson masses are taken from ex-
perimental data [2] in defining the frames according to Eq. (2.30). The solid curves
represent the Drell-Yan frame while the other curves represent the longitudinal I (dot-
ted lines) and II (dashed lines) frames. The shaded areas represent the results from all
other frames. The left panel shows the transition form factor at a larger scale of q2,
and the right panel focuses on the small q2 region. (Figure adapted from Ref. [10])
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Figure 2.20 The transition form factor of the transition ψA(2S ) → ψB(1S )γ (ψA, ψB = V,P or
P,V) of charmonia (blue curves/shades) and bottomonia (red curves/shades), calcu-
lated with light-front wavefunctions at Nmax = Lmax = 32 basis truncation. Meson
masses are taken from experimental data [2] for defining the frames according to
Eq. (2.30). The solid curves represent the Drell-Yan frame while the other curves
represent the longitudinal I (dotted lines) and II (dashed lines) frames. The shaded
areas represent the results from all other frames. The left panel shows the transition
form factor at a larger scale of q2, and the right panel focuses on the small q2 region.
(Figure adapted from Ref. [10])
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Figure 2.21 The transition form factor of the transition V(1D) → P(1S )γ of charmonia (blue
curves/shades) and bottomonia (red curves/shades), calculated with light-front wave-
functions at Nmax = Lmax = 32 basis truncation. Meson masses are taken from ex-
perimental data [2] for defining the frames according to Eq. (2.30). The solid curves
represent the Drell-Yan frame while the other curves represent the longitudinal I (dot-
ted lines) and II (dashed lines) frames. The shaded areas represent the results from all
other frames. The left panel shows the transition form factor at a larger scale of q2,
and the right panel focuses on the small q2 region.
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Figure 2.22 The transition form factors for charmonia (left panels) and bottomonia (right panels)
with different basis truncations. Meson masses are taken from experimental data [2] in
defining the frames according to Eq. (2.30). The solid curves represent the Drell-Yan
frame while the other curves represent the longitudinal I (dotted lines) and II (dashed
lines) frames. The shaded areas represent the results from all other frames. (Figure
adapted from Ref. [10])

2.3.4 The electromagnetic Dalitz decay

The effective mass spectrum of the lepton pair in the Dalitz decay can be obtained from the correspond-

ing transition form factor according to Eqs. (2.81) and (2.83). The results of dΓ(ψA → ψBl+l−)/ dq2 for eight

selected decays are shown in Fig. 2.23. The frame dependence is barely visible in the allowed transitions

as in the top four panels, but very substantial in the hindered transitions as in the bottom four panels. Such

different sensitivities to frames can be expected in light of the sensitivities observed for the transition form

factors in the time-like region. The allowed transitions are between states with similar spatial wavefunctions

(e.g. J/ψ(1S ) → ηc(1S )e+e−), whereas the hindered transitions are between states with nearly orthogonal
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spatial parts (e.g. ψ(2S ) → ηc(1S )e+e−). Therefore in the latter cases, the transition form factors and thus

the leptonic widths would admit strong cancellations between positive and negative contributions, and thus

become more sensitive to the finer details of light-front wavefunctions.

2.3.5 Covariant light-front formalism

So far we have been using the standard light-front approach to calculate the transition form factor. In this

section, we will study the transition form factor with a different approach, the covariant formulation of light-

front dynamics [70]. In the explicitly covariant light-front dynamics, the hadron wavefunctions are defined

on the general plane ω · x = 0, where ω is an arbitrary four-vector restricted to the condition ω2 = 0. The

standard light-front approach is recovered as a particular case for ω = (ω0, ω1, ω2, ω3) = (1, 0, 0,−1), where

the wavefunction is defined on the plane of x+ = 0. The dynamical dependence of the wavefunction on

the light-front plane results in their dependence on ω. The electromagnetic form factors should not depend

on a particular choice of orientation of the light-front plane in an exact calculation or in a given order of

perturbation theory. However, in approximate calculations, the non-physical dependence on ω would arise

in the electromagnetic vertex. The covariant light-front formalism provides a method to extract the physical

form factors from such vertices.

The amplitude of the M1 transition is written in its explicitly covariant form as

Iµm j(P, P
′) ≡ 〈P(P′)| Jµ |V(P,m j)〉 =

2
mP + mV

Fµνeν(P,m j) , (2.105)

where the tensor Fµν is decomposed on the general invariant amplitudes as

Fµν =εµναβP′αPβV(q2) + εµναβP′αωβB1(q2) + εµναβPαωβB2(q2) + (WµP′ν + WνP′µ)B3(q2)

+ (Wµων + Wνωµ)B4(q2) +
1

ω · P
(WµPν + WνPµ)B5(q2) ,

(2.106)

with Wµ = εµρσλωρP′σPλ. V(q2) is the physical transition form factor, and B1,2,3,4,5 are non-physical form

factors arising from the ω-dependent parts. Note that in the exact calculation, the ω-dependent parts cancel

each other and the standard Lorentz covariant decomposition as in Eq. (2.78) follows.

From Eq. (2.106), the physical form factor V can be obtained as,

V(Q2) =
1

2Q2(ω · P)
εµνρσFµνqρωσ, (2.107)
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Figure 2.23 The effective mass spectrum of the lepton pairs in the Dalitz decays for charmonia
(left panels) and bottomonia (right panels). The dashed and solid curves represent the
longitudinal I and II frames respectively. The shaded areas represent the results from
all other frames. ∆m2 = (mA − mB)2 is the square of the mass difference between
the initial and the final mesons. Meson masses are taken from experimental data [2].
(Figure adapted from Ref. [10])
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where q = P′−P and Q2 ≡ −q2. We follow the light-front graph technique presented in Ref. [70] to calculate

the amplitude. In the impulse approximation, Fµν can be written as the sum of two contributions Fµν = Fµν
q +

Fµν
q̄ , in which the photon coupled to the quark as Fµν

q and the photon coupled to the antiquark as Fµν
q̄ . We

will derive the transition form factor from Fµν
q . The diagrammatic representation of the radiative transition

from a vector meson φV to a pseudoscalar meson φP is shown in Fig. 2.24. The spurions represented as

dashed lines are the fictitious particles responsible for taking the intermediate states off the energy shell.

φ
µ
V(kq, kq̄, P ) φP(k′q, kq̄, P ′)

kq̄, s̄

kq, s k′q, s′

−q

ωτ ωτ ′

Figure 2.24 Diagrammatic representation of the radiative transition from a vector meson φV to a
pseudoscalar meson φP. q = P′ − P. The dashed lines correspond to the spurions. The
wavy line represents the photon and it is coupled to the quark line.

It follows that

Fµν
q =

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3 Tr[φ∗

P
(k′q, kq̄, P′)(/k′q + mq)γµ(/kq + mq)φν

V
(kq, kq̄, P)(/kq̄ − mq̄)] . (2.108)

The ‘slash’ notation is defined as /a ≡ aµγµ. The valence Fock sector light-front wavefunctions relate to φν
V

and φP as

ψ
(m j)
ss̄/V(x,~k⊥) = eµ(P,m j)ūs(kq)φµ

V
(kq, kq̄, P)vs̄(kq̄) ,

ψs′ s̄/P(x′,~k′⊥) = ūs′(k′q)φP(k′q, kq̄, P′)vs̄(kq̄) .
(2.109)
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φν
V

and φP are subject to Lorentz structure decomposition,

φ
µ
V

(kq, kq̄, P) =
1

2mq
(kq − kq̄)µg1(x,~k⊥) + γµg2(x,~k⊥)

+
mqω

µ

ω · P
g3(x,~k⊥) +

(kq − kq̄)µ /ω
2ω · P

g4(x,~k⊥)

−
i

mqω · P
γ5εµνρσkqνkq̄ρωσg5(x,~k⊥) +

m2
qω

µ /ω

(ω · P)2 g6(x,~k⊥) ,

φP(k′q, kq̄, P′) =γ5 f1(x′,~k′⊥) + /ωγ5 f2(x′,~k′⊥) .

(2.110)

One can thereby extract the structure functions g1,...,6 and f1,2 from the light-front wavefunctions. The ex-

pressions are in Eqs. (2.111) and (2.112). Note that we do not present g3 and g6 below since their expressions

are rather tedious and more importantly, they do not contribute to the transition form factor V(Q2) as we will

see later.

f1(x′,~k′⊥) = −

√
x′(1 − x′)
(k′)L ψ↑↑/P(x′,~k′⊥)

f2(x′,~k′⊥) =
1

2P′+
√

x′(1 − x′)(k′)L

[
(k′)Lψ↑↓/P(x′,~k′⊥) + mqψ↑↑/P(x′,~k′⊥)

] (2.111)

g1(x,~k⊥) =
mq
√

x(1 − x)
√

2kRkR(m2
q + kRkL)

[
− kRkRψ

(m j=1)
↑↑/V

(x,~k⊥) + (2m2
q + kRkL)ψ(m j=1)

↓↓/V
(x,~k⊥)

− mqkR[ψ(m j=1)
↑↓/V

(x,~k⊥) − ψ(m j=1)
↓↑/V

(x,~k⊥)]
]

g2(x,~k⊥) =

√
x(1 − x)

√
2kRkR(m2

q + kRkL)

[
mqkLψ

(m j=1)
↓↓/V

(x,~k⊥) + mqkRψ
(m j=1)
↑↑/V

(x,~k⊥)

− kRkL[ψ(m j=1)
↑↓/V

(x,~k⊥) − ψ(m j=1)
↓↑/V

(x,~k⊥)]
]

g3(x,~k⊥) = . . .

g4(x,~k⊥) =
1

√
2
√

x(1 − x)kRkR

[
− (1 − x)kRψ

(m j=1)
↑↓/V

(x,~k⊥) − xkRψ
(m j=1)
↓↑/V

(x,~k⊥) − (1 − 2x)mqψ
(m j=1)
↓↓/V

(x,~k⊥)
]

g5(x,~k⊥) = −
mq(P+)2 √x(1 − x)

2
√

2(m2
q + kRkL)[2(P+)2kR − PR(PRkL − PLkR)]

[
kRψ

(m j=1)
↑↑/V

(x,~k⊥) + kLψ
(m j=1)
↓↓/V

(x,~k⊥)

+ mq[ψ(m j=1)
↓↑/V

(x,~k⊥) − ψ(m j=1)
↑↓/V

(x,~k⊥)]
]

g6(x,~k⊥) = . . .

(2.112)
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We assign momenta ωτ and ωτ′ to the fictitious spurions in the initial and final particles respectively, as

indicated in Fig. 2.24. The conservation law reads,

P = kq + kq̄ − ωτ, P′ = k′q + kq̄ − ωτ
′ . (2.113)

In the Drell-Yan frame, q+ = P′+−P+. It follows that x′ = x, ~k′⊥ = ~k⊥+(1−x)~q⊥ and Q2 = ~q2
⊥. The transition

form factor follows by plugging Eqs. (2.110) and (2.108) in Eq. (2.107). One would need to compute the

following scalar products during the derivation. Scalar products of the mesons’ momenta,

P2 = m2
V
, P′2 = m2

P
,

q2 = (P′ − P)2 ≡ −Q2,

P · P′ = (m2
V

+ m2
P

+ Q2)/2,

P · q = P · (P′ − P) = (−m2
V

+ m2
P

+ Q2)/2,

P′ · q = P′ · (P′ − P) = (−m2
V

+ m2
P
− Q2)/2 .

(2.114)

Scalar products of the fermions’ momenta,

k2
q = k′2q = k2

q̄ = m2
q, kq · k′q = (2m2

q + Q2)/2,

kq · kq̄ = (s − 2m2
q)/2, k′q · kq̄ = (s′ − 2m2

q)/2.
(2.115)

s and s′ are defined as

s ≡ (kq + kq̄)2 = m2
V

+ 2P+τ,

s′ ≡ (k′q + kq̄)2 = m2
P

+ 2P+τ′.

(2.116)

In terms of the relative coordinates, they take the forms of

s =
~k2
⊥ + m2

q

x
+
~k2
⊥ + m2

q

1 − x
, s′ =

~k′
2
⊥ + m2

q

x
+
~k′

2
⊥ + m2

q

1 − x
. (2.117)

Finally the scalar products between the fermions’ and the mesons’ momenta,

kq · P =
x
2

m2
V

+
1 − x

2
s, kq̄ · P =

1 − x
2

m2
V

+
x
2

s,

k′q · P
′ =

x
2

m2
P

+
1 − x

2
s′, kq̄ · P′ =

1 − x
2

m2
P

+
x
2

s′,

kq · q = [(kq + q)2 − k2
q − q2]/2 =

1
2

Q2 +
x
2

(s − s′ − m2
V

+ m2
P

) ,

k′q · q = −Q2/2 + xP+(τ − τ′) = −
1
2

Q2 +
x
2

(s − s′ − m2
V

+ m2
P

) ,

kq · P′ = kq · (P + q), k′q · P = k′q · (P
′ − q), kq̄ · q = kq̄ · (P′ − P) .

(2.118)
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We then arrive at

Vq(Q2) =

∫ 1

0

dx
2x(1 − x)

∫
d2~k⊥
(2π)3 ×

i
Q22mqx(1 − x)

{
Q2 f1

[
g1

(
~k2
⊥ + (2x − 1)[(1 − x)~k⊥ · ~q⊥ + m2

q(2x − 1)]
)

+ 2m2
q(x − 1)x[4g2 + g4(2x − 1)]

]
+ 2Q2 f2mqP+(x − 1)x

[
g1(1 − 2x)2 + 2(x − 1)x[2g2 + g4(2x − 1)]

]
+ 2~k⊥ · ~q⊥

[
f1g1(x − 1)~k⊥ · ~q⊥ − 2 f1g5x(~k2

⊥ + (1 − x)~k⊥ · ~q⊥ + m2
q) + 4 f2mqP+(x − 1)x2(g2 − g5)

]}
.

(2.119)

We see that g3 and g6 do not contribute to V(Q2). Two weight functions appear to depend on the momentum

of the mesons, f2 and g5. However, in the transition form factor, f2 always appears in the product of f2P+,

which cancels out the P dependence. In the denominator of g5, (PRkL − PLkR) would be zero if we ignore

the imaginary part, leaving g5 independent of P. From Eq. (2.119), one could proceed the calculation with

light-front wavefunctions, such as from BLFQ [3].

This procedure extracts the transition form factor by considering all the four current components and

all three m j states of the vector meson, as opposed to the standard light-front calculation discussed in Sec-

tion 2.3.2. It might shed additional light on the Lorentz symmetry violations arising from Fock sector

truncation.

2.4 Decay constant

The decay constant of the vector meson is defined with the same electromagnetic current operator as the

elastic and the transition form factors, via the local vacuum-to-hadron matrix elements. The decay constant

of the pseudoscalar is defined with the axial current Jµ5 = Ψ̄γµγ5Ψ.

〈0| Ψ̄(0)γµγ5Ψ(0) |P(P)〉 = iPµ fP ,

〈0| Ψ̄(0)γµΨ(0) |V(P,m j)〉 = mVeµ(P,m j) fV .

(2.120)

Here mV is the mass of the vector mesonV. fP and fV are the decay constants for the pseudoscalar and the

vector respectively. Those decay constants can be accesses through various processes by experiment.

For a charged pseudoscalar, the decay constant is related to its decay via a virtual W+ into a l+νl final

state, as in Fig. 2.25. To the lowest order, the decay width is related to the psudoscalar decay constant



www.manaraa.com

91

as [128]

ΓP→νl =
G2

F

8π
f 2
P

m2
l m2
P

(
1 −

m2
l

m2
P

)2
|Vq1q2 |

2 . (2.121)

mP is the mass of the pseudoscalar meson P. ml is the mass of the lepton l, Vq1q2 is the Cabibbo-Kobayashi-

Maskawa (CKM) matrix element between the constituent quarks q1q̄2 in P, and GF is the Fermi coupling

constant.

W+

νl

l+

P+

Figure 2.25 The annihilation process for a charged pseudoscalar P+ (such as π+, K+ and D+) de-
cays into a l+νl state. This diagram also indicates the process for the charge-conjugate
particle as P− → W− → l−ν̄l.

For a neutral pseudoscalar, its decay constant can be accessed via the two photon decay, as in Fig. 2.26.

Its relation to the decay width can be derived through a single pole fit to the transition form factor FPγ [129,

130], and the leading order approximation is

ΓP→γγ = 4πQ4
fα

2
em

f 2
P

mP
. (2.122)

Q f is the dimensionless fractional charge of the constituent quarks, Qc = +2/3 for the charm quark and

Qb = −1/3 for the bottom quark.

γ

P 0

γ

Figure 2.26 A neutral pseudoscalar P0 (such as η, ηc and ηb) decays into two photons.

For a vector meson, the decay constant can be accessed via its dilepton decay, as in Fig. 2.27. It relates

to the experimental decay width as [129, 130],

ΓV→l+l− =
4π
3
Q2

fα
2
em

f 2
V

mV
. (2.123)
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γ∗
l−

l+

V

Figure 2.27 A vector meson V (such as J/ψ, Υ) decays into dileptons.

Since only the absolute value of decay constants matter when relating to decay width, I will drop the

i in the following calculation for convenience. The light-front wavefunction representations of the matrix

elements read,

〈0| Ψ̄(0)γµγ5Ψ(0) |P(P)〉 =
√

Nc

∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψss̄/P(~k⊥, x)

v̄s̄((1 − x)P+,−~k⊥ + (1 − x)~P⊥)γµγ5us(xP+,~k⊥ + x~P⊥) ,

〈0| Ψ̄(0)γµΨ(0) |V(P,m j)〉 =
√

Nc

∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψ

(m j)
ss̄/V(~k⊥, x)

v̄s̄((1 − x)P+,−~k⊥ + (1 − x)~P⊥)γµus(xP+,~k⊥ + x~P⊥) .

(2.124)

The derivation is very similar to that of the hadron matrix elements in Section 2.2.2. Calculations of the

spinor part are included in Appendix A.3.

In the discussion of the transition form factors, we see that differences could arise when different mag-

netic projections of the vector mesons are used, in combination with different components of the electromag-

netic current operator. It is then interesting to know how the decay constant would reflect such differences.

The decay constant is defined with the same current operator as the transition form factor, but it features

the simplicity of involving only one light-front wavefunction instead of convoluting two light-front wave-

functions. It therefore could provide a pathway for examining more specific information on the rotational

symmetry of light-front wavefunctions.
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2.4.1 Decay constant of the pseudoscalar

1. J+
5

fP|J+ =
√

Nc

∫ 1

0

dx
√

x(1 − x)

∫
d2k⊥
(2π)3 [ψ↑↓/P(~k⊥, x) − ψ↓↑/P(~k⊥, x)]

=
√

2Nc

∫ 1

0

dx
√

x(1 − x)

∫
d2k⊥
(2π)3ψ↑↓−↓↑/P(~k⊥, x) ,

(2.125)

In the second equality, we adopt the notations of spin configurations as ψ↑↓±↓↑ ≡ (ψ↑↓±ψ↓↑)/
√

2. This

would be convenient to study the non-relativistic limit.

2. J⊥5

Without loss of generality, we use JR = Jx + iJy as the transverse current to calculate the decay

constant. The calculation with JL = Jx − iJy is very similar and leads to the same result.

fP|JR =
1

PR

√
Nc

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3

2
√

x(1 − x)[
− (−kR + (1 − x)PR)xψ↓↑/P(~k⊥, x) + (kR + xPR)(1 − x)ψ↑↓/P(~k⊥, x)

+ mq(1 − 2x)ψ↓↓/P(~k⊥, x)
]

=
√

Nc

∫ 1

0

dx
√

x(1 − x)

∫
d2k⊥
(2π)3 [ψ↑↓/P(~k⊥, x) − ψ↓↑/P(~k⊥, x)]

= fP|J+ .

(2.126)

In the second equation, ψ↓↓/P and kRψ↑↓/↓↑/P vanish under the angular integration. We then get exactly

the same result from µ = +, as in Eq (2.125).
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3. J−5

fP|J− =
1

P−
√

Nc

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3

2
√

x(1 − x)P+{
mq(−kR + (1 − x)PR − kR − xPR)ψ↑↑/P(~k⊥, x)

+ [−m2
q − (−kR + (1 − x)PR)(kL + xPL)]ψ↓↑/P(~k⊥, x)

+ [m2
q + (−kL + (1 − x)PL)(kR + xPR)]ψ↑↓/P(~k⊥, x)

+ mq(−kL + (1 − x)PL − kL − xPL)ψ↓↓/P(~k⊥, x)]
}

=
1

m2
P

+ ~P2
⊥

√
Nc

∫ 1

0

dx
[x(1 − x)]3/2

∫
d2k⊥
(2π)3

{
− 2mqkRψ↑↑/P(~k⊥, x)

− 2mqkLψ↓↓/P(~k⊥, x) + [m2
q −

~k2
⊥ + x(1 − x)~P2

⊥][ψ↑↓/P(~k⊥, x) − ψ↓↑/P(~k⊥, x)]
}
.

(2.127)

In the second equation, ψ↑↑/↓↓/P and kR/Lψ↑↓/↓↑/P vanish under the angular integration. The decay

constant from the J− current component has an dependence on the meson’s momentum ~P⊥, so we

could not unambiguously determine its value. To match it with the extraction from the J+ or the J⊥

current, one would need to drop the subdominant wavefunction ψ↑↑/↓↓/P and replace the meson mass

by m2
P
→ (m2

q −
~k2
⊥)/[x(1 − x)]. The first condition is satisfied in the nonrelativistic limit. The second

condition implies nontrivial requirement on the wavefunction and the associated mass eigenvalue.

Note that the replacement is different from the invariant mass of m2
0 = m2

P
→ (m2

q + ~k2
⊥)/[x(1 − x)].

To summarize, in calculating the decay constant of the pseudoscalar, using the J+ and the J⊥ current com-

ponents are equivalent. The calculation with the J− current has dependence on the meson’s momentum and

agrees with the two only under some nontrivial conditions. We suggest using J+ or J⊥ to calculate the decay

constant, fP = fP|J+ = fP|J⊥ .

2.4.2 Decay constant of the vector

1. J+

Since e+(P,m j = ±1) = 0, with the “+” component of the current the decay constant can only be
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extracted from m j = 0,

fV|J+,m j=0 =
√

Nc

∫ 1

0

dx
√

x(1 − x)

∫
d2k⊥
(2π)3 [ψ(m j=0)

↑↓/V
(~k⊥, x) + ψ

(m j=0)
↓↑/V

(~k⊥, x)]

=
√

2Nc

∫ 1

0

dx
√

x(1 − x)

∫
d2k⊥
(2π)3ψ

(m j=0)
↑↓+↓↑/V

(~k⊥, x) .
(2.128)

2. J⊥

With the transverse current, the decay constant can be extracted from both the m j = 0 state and the

m j = ±1 state. For the calculation with the m j = 0 state, though we use the JR current in derivation,

using JL would lead to the same result.

fV|J⊥,m j=0 =
1

PR

√
Nc

∫ 1

0

dx
[x(1 − x)]3/2

∫
d2k⊥
(2π)3 [(−kR + (1 − x)PR)xψ(m j=0)

↓↑/V
(~k⊥, x)

+ (kR + xPR)(1 − x)ψ(m j=0)
↑↓/V

(~k⊥, x) + mqψ
(m j=0)
↓↓/V

(~k⊥, x)]

=
√

2Nc

∫ 1

0

dx
√

x(1 − x)

∫
d2k⊥
(2π)3ψ

(m j=0)
↑↓+↓↑/V

(~k⊥, x)

= fV|J+,m j=0 .

(2.129)

In the second line, ψ(m j=0)
↓↓/V

and kRψ
(m j=0)
↑↓/↓↑/V

vanish under the angular integration. We get the same result

with that from J+, as in Eq (2.128). This should not come as a surprise. Recall that the “+” and the

transverse matrix elements with the same m j can be related through a transverse Lorentz boost [see

Eq. (2.88)].

To extract the decay constant with the m j = 1 state, we use JL and note that JR is not available since

eR(P,m j = 1) = 0.

fV|JL,m j=1 =

√
Nc

√
2mV

∫ 1

0

dx
[x(1 − x)]3/2

∫
d2k⊥
(2π)3 [−kLxψ(m j=1)

↑↓/V
(~k⊥, x)

+ kL(1 − x)ψ(m j=1)
↓↑/V

(~k⊥, x) − mqψ
(m j=1)
↑↑/V

(~k⊥, x)] .

(2.130)

To extract the decay constant with the m j = −1 state, we use JR and note that JL is not available since

eL(P,m j = −1) = 0.

fV|JR,m j=−1 =

√
Nc

√
2mV

∫ 1

0

dx
[x(1 − x)]3/2

∫
d2k⊥
(2π)3 [−kRxψ(m j=−1)

↓↑/V
(~k⊥, x)

+ kR(1 − x)ψ(m j=−1)
↑↓/V

(~k⊥, x) + mqψ
(m j=−1)
↓↓/V

(~k⊥, x)] .

(2.131)
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Eqs. (2.130) and (2.131) are equivalent by an overall minus sign. Considering that we take the absolute

value as the decay constant, it is safe to write fV|J⊥,m j=±1 = fV|JL,m j=1 = fV|JR,m j=−1.

3. J−

With the “-” current, the decay constant can be extracted from both the m j = 0 state and the m j = ±1

state.

fV|J−,m j=0 =
P+

~P2
⊥ − m2

V

√
Nc

∫ 1

0

dx
[x(1 − x)]3/2

∫
d2k⊥
(2π)3

1
P+

[−m2
q − kRkL + (1 − x)xPRPL][ψ(m j=0)

↑↓/V
(~k⊥, x) + ψ

(m j=0)
↓↑/V

(~k⊥, x)]

=
1

~P2
⊥ − m2

V

√
2Nc

∫ 1

0

dx
√

x(1 − x)

∫
d2k⊥
(2π)3

[
~P2
⊥ −

m2
q + ~k2

⊥

x(1 − x)

]
ψ

(m j=0)
↑↓+↓↑/V

(~k⊥, x) .

(2.132)

In deriving the above equation, ψ(m j=0)
↑↑/↓↓/V

and kR/Lψ
(m j=0)
↑↓/↓↑/V

vanish under the angular integration. The

troubling dependence on the meson momentum appear again for the J− current. By comparing to the

calculation with the J+ and J⊥ currents, Eq. (2.128) or Eq. (2.129), we see that the substitution of

the meson mass to the invariant mass (m2
V
→ m2

0 = (m2
q + ~k2

⊥)/[x(1 − x)]) would bring J− calculation

equal to J+ and J⊥.

For m j = 1, ψ(m j=1)
↑↓/↓↑/V

and ψ(m j=1)
↓↓/V

vanish under the angular integration.

fV|J−,m j=1 =
P+

√
2mVPR

√
Nc

∫ 1

0

dx
[x(1 − x)]3/2

∫
d2k⊥
(2π)3

1
P+

{
− mqPRψ

(m j=1)
↑↑/V

(~k⊥, x)

+ (1 − x)PRkLψ
(m j=1)
↓↑/V

(~k⊥, x) − xPRkLψ
(m j=1)
↑↓/V

(~k⊥, x)
}

=

√
Nc

√
2mV

∫ 1

0

dx
[x(1 − x)]3/2

∫
d2k⊥
(2π)3 [−kLxψ(m j=1)

↑↓/V
(~k⊥, x)

+ kL(1 − x)ψ(m j=1)
↓↑/V

(~k⊥, x) − mqψ
(m j=1)
↑↑/V

(~k⊥, x)]

= fV|JL,m j=1 .

(2.133)
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For m j = −1, ψ(m j=−1)
↑↓/↓↑/V

and ψ(m j=−1)
↑↑/V

vanish under the angular integration.

fV|J−,m j=−1 =
P+

√
2mVPL

√
Nc

∫ 1

0

dx
[x(1 − x)]3/2

∫
d2k⊥
(2π)3

1
P+

{
mqPLψ

(m j=−1)
↓↓/V

(~k⊥, x)

− xkRPLψ
(m j=−1)
↓↑/V

(~k⊥, x) + (1 − x)PLkRψ
(m j=−1)
↑↓/V

(~k⊥, x)
}

=

√
Nc

√
2mV

∫ 1

0

dx
[x(1 − x)]3/2

∫
d2k⊥
(2π)3 [−kRxψ(m j=−1)

↓↑/V
(~k⊥, x)

+ kR(1 − x)ψ(m j=−1)
↑↓/V

(~k⊥, x) + mqψ
(m j=−1)
↓↓/V

(~k⊥, x)]

= fV|JR,m j=−1 .

(2.134)

In calculating the decay constant of the vector meson with the m j = ±1 states, using the J− and the

J⊥ currents agree.

To summarize, in calculating the decay constant of the vector, there are two choices on the magnetic projec-

tion of the particle state, m j = 0 and m j = ±1. For m j = 0, using the J+ and the J⊥ current components are

equivalent, and the calculation with the J− current agrees with the two by substituting the meson mass with

the invariant mass of the constituents. The calculation of fV|m j=0 = fV|J+/J⊥,m j=0 should follow Eq. (2.135),

which is equivalent to Eq. (2.128) or Eq. (2.129). For m j = ±1, the J+ is not available, and the J⊥ and the

J− currents give the same result. The calculation of fV|m j=±1 = fV|J−/J⊥,m j=±1 should follow Eq. (2.136),

which is equivalent to Eq. (2.131), (2.130), (2.133) and (2.134).

fV|m j=0 =
√

2Nc

∫ 1

0

dx
√

x(1 − x)

∫
d2k⊥
(2π)3ψ

(m j=0)
↑↓+↓↑/V

(~k⊥, x) , (2.135)

fV|m j=±1 =

√
Nc

√
2mV

∫ 1

0

dx
[x(1 − x)]3/2

∫
d2k⊥
(2π)3 [−mqψ

(m j=1)
↑↑/V

(~k⊥, x) − kLxψ(m j=1)
↑↓/V

(~k⊥, x)

+ kL(1 − x)ψ(m j=1)
↓↑/V

(~k⊥, x)] .

(2.136)

In the non-relativistic(NR) limit of x → 1/2 + kz/(2mq), mq → mV/2 and mq >> kz, only the dominant

spin components of the wavefunction, ψ(m j=0)
↑↓+↓↑/V

, ψ(m j=−1)
↓↓/V

and ψ(m j=1)
↑↑/V

, survive as the NR wavefunction ψNR
V

.

The two choices of extracting the decay constants reduce to the same form, i.e. f NR
V
|m j=0 = f NR

V
|m j=±1 as in

Eqs. (2.137) and (2.138). Alternatively, we can write the NR limit of the decay constant in the coordinate

space, as in Eqs. (2.139) and (2.140). In both cases, the leading order approximation of the decay constant is

proportional to the wavefunction at the origin ~r = 0. Note that the derivation of the NR limit in Eqs. (2.137)
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and (2.139) also apply to the pseudoscalar as in Eq. (2.125).

f NR
V
|m j=0 →

√
2Nc

∫
d3~k

(2π)32mq
[(

1
2

+
kz

2mq
)(

1
2
−

kz

2mq
)]−1/2ψNR

V
(~k)

=
√

2Nc

∫
d3~k

(2π)3

1
mq[1 − k2

z /m2
q]1/2

ψNR
V

(~k)

→
√

2Nc

∫
d3~k

(2π)3

1
mq

ψNR
V

(~k) .

(2.137)

f NR
V
|m j=±1 =

√
Nc

√
2(2mq)

∫
d3~k

(2π)32mq
[(

1
2

+
kz

2mq
)(

1
2
−

kz

2mq
)]−3/2mqψ

NR
V

(~k)

=

√
Nc

2
√

2

∫
d3~k

(2π)3

4
mq[1 − k2

z /m2
q]3/2

ψNR
V

(~k)

→
√

2Nc

∫
d3~k

(2π)3

1
mq

ψNR
V

(~k) .

(2.138)

The non-relativisitic limits are also found in terms of the non-relativistic wavefunction in the the coordinate

space,

f NR
V
|m j=0 =

√
2Nc

mq

∫
d3~k

(2π)3 [1 +
1
2

(
kz

mq
)2 +

3
8

(
kz

mq
)4 + . . .]ψNR

V
(~k)

=

√
2Nc

mq
[ψ̃NR
V

(~r = 0) −
1

2m2
q
ψ̃′′NR
V

(~r = 0) +
3

8m4
q
ψ̃′′′′NR
V

(~r = 0) + . . .] .
(2.139)

f NR
V
|m j=±1 =

√
2Nc

mq

∫
d3~k

(2π)3 [1 +
3
2

(
kz

mq
)2 +

15
8

(
kz

mq
)4 + . . .]ψNR

V
(~k)

=

√
2Nc

mq
[ψ̃NR
V

(~r = 0) −
3

2m2
q
ψ̃′′NR
/V (~r = 0) +

15
8m4

q
ψ̃′′′′NR
V

(~r = 0) + . . .] .
(2.140)

In calculations with the light-front wavefunctions solved by treating the mesons as relativistic bound

states, the difference between fV|m j=0 and fV|m j=±1 could help examine the violation of rotational symmetry

in the modeling of the bound state system. This test is in the same spirit of examining the deviations of the

mass eigenvalues associated with different m j.

For vector meson states identified as S-wave states, both fV|m j=0 and fV|m j=±1 arise primarily from the

dominant spin components of light-front wavefunctions, which relate to the nonrelativistic wavefunctions.

Moreover, the two expressions reduce to the same form in the nonrelativistic limit as we have found above.

For vector meson states identified as D-wave states, both fV|m j=0 and fV|m j=±1 are calculated mainly from the
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dominant but less occupied spin components of light-front wavefunctions (see Sec. 2.3.2.1 for discussions

of spin components for D-wave states). The two resulting small values are sensitive to model and numerical

uncertainties, and could reveal differences. Nevertheless, for the S-wave states of heavy quarkonia, we

expect to find robust results when either m j = 0 or m j = ±1 is used to calculate fV. The parameters mV and

mq involved in fV|m j=±1 might result in additional uncertainty but the resulting fluctuation should be small

for heavy systems.

We use both Eqs. (2.135) and (2.136) to calculate the decay constants for the lowest three charmonium

and five bottomonium vector states below their open flavor thresholds. We take the same light-front wave-

functions as we have used in calculating the elastic form factor and the transition form factor in the previous

sections. The wavefunction is solved by the BLFQ formalism which extends the holographic QCD [61] by

introducing the one-gluon exchange interaction with a running coupling [3]. The results are presented in

Fig. 2.28, where basis truncations are chosen to match the UV cutoffs Λuv ' κ
√

Nmax ≈ 1.7mq [3]. The two

sets of results, fV|m j=0 and fV|m j=±1, are all within each others’ uncertainties for the five S-wave states in

Fig. 2.28. Such consistency implies that the rotational symmetry is reasonably preserved in these light-front

wavefunctions we adopted. For the D-wave states, the decay constants are small but differences between

fV|m j=0 and fV|m j=±1 can be noticed since each result depends on different small components. By impli-

cation, the transition form factor V̂(q2)|JR,m j=0 calculated using the transverse current, with its overlapping

dominant components of both the initial and the final light-front wavefunctions, is further indicated as a

robust result.
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Figure 2.28 Decay constants of vector heavy quarkonia, calculated from Eqs. (2.135) and (2.136).
Single (double) apostrophe stands for the radial excited 2S (3S) state. The D-wave
states are identified as n3D1. The results are obtained with Nmax = Lmax = 8 with error
bars ∆ fcc̄ = | fcc̄(Nmax = 8) − fcc̄(Nmax = 16)| for charmonium, and Nmax = Lmax = 32
with error bars ∆ fbb̄ = 2| fbb̄(Nmax = 32) − fbb̄(Nmax = 24)| for bottomonium. Results
from PDG [4] are provided for comparison. The right panel shows the ratio of fV|m j=±1

to fV|m j=0, where the S-wave states are shown in filled triangles and the D-wave states
are shown in open diamonds. (Figure adapted from Ref. [9].)



www.manaraa.com

101

CHAPTER 3. TIME-DEPENDENT BASIS LIGHT-FRONT QUANTIZATION

APPROACH TO A SCATTERING PROBLEM

In this chapter, we will study the time-dependent process using the light-front Hamiltonian approach.

We first review the formalism for solving the time-dependent problem with an external field in general. We

then use this formalism to investigate the scattering of a quark jet on a high-energy nucleus.

3.1 Time-dependent basis light-front quantization

Non-perturbative Hamiltonian light-front quantum field theory offers insights into both the bound state

properties and the dynamical scattering processes. We have already discussed the first aspect in Chapter 2

with the basis light-front quantization (BLFQ) approach [1]. BLFQ is based on the light-front quantum field

theory and the Hamiltonian formalism. The implementation of the basis function representation allows us to

choose a basis with the same symmetries of the system under investigation, and is therefore advantageous in

carrying out efficient numerical calculations. It has been applied to solve both the QED bound state system

of positronium [45] and the QCD bound states of heavy and light mesons [48, 3, 49, 50]. Time-dependent

basis light-front quantization (tBLFQ) is a natural extension of the BLFQ formalism to investigate non-

perturbative time-evolution problems. It was first introduced in Ref. [37] to solve the nonlinear Compton

scattering, and later applied to the interaction of an electron with intense electromagnetic fields in Ref. [38].

We will study its application to the quark nucleus scattering in the next section.

The light-front Hamiltonian could be derived from the Lagrangian through the standard Legendre trans-

formation [33]. The QCD Lagrangian with an external field reads

L = −
1
4

Fµν
aFa

µν + ψ(iγµDµ − m)ψ , (3.1)

where Dµ ≡ ∂µI + igCµ and Cµ is the sum of the quantum gauge fields Aµ and the external field Aµ. In

general, the background field should also be included in the field tensor, such that Fµν
a ≡ ∂µCν

a − ∂
νCµ

a −

g f abcCµ
bCν

c . The full light-front Hamiltonian P− is obtained in the light cone gauge A+ = 0, and the detailed
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derivation can be found in Appendix B. The evolution of quantum states is governed by the Shrödinger

equation

i
∂

∂x+
|ψ; x+〉 =

1
2

P−(x+) |ψ; x+〉 , (3.2)

where |ψ; x+〉 is the state at light-front time x+. The Hamiltonian contains two parts: P−QCD which is the full

light-front Hamiltonian of QCD as in Eq. (1.9), and V which contains interaction terms introduced by the

background field, so P−(x+) = P−QCD + V(x+). This interaction term, in general, contains an explicit time

dependence. It is therefore natural to use an interaction picture to solve the evolution equation,

i
∂

∂x+
|ψ; x+〉I =

1
2

VI(x+) |ψ; x+〉I , (3.3)

where VI(x+) = ei 1
2 P−QCD x+

V(x+)e−i 1
2 P−QCD x+

is the interaction Hamiltonian in the interaction picture. The

solution of Eq. (3.3) describes the state at a given light-front time x+,

|ψ; x+〉I = T+ exp[−
i
2

∫ x+

0
dz+VI(z+)] |ψ; 0〉I , (3.4)

where T+ is the light-front time ordering. In the perturbative calculations, the time-ordered exponential is

written as the Taylor series expansion, and only the leading terms are retained. However, in cases where

the external fields are strong, a perturbative treatment may not be sufficient. It is our interest to solve the

problem through a non-perturbative approach. We decompose the time-evolution operator into many small

steps in the light-front time x+,

T+ exp[−
i
2

∫ x+

0
dz+VI(z+)] =T+ lim

n→∞

n∏
k=1

[1 −
i
2

VI(x+
k )

x+

n
]

= lim
n→∞

[1 −
i
2

VI(x+
n )δx+] . . . [1 −

i
2

VI(x+
1 )δx+] .

(3.5)

The step size is δx+ ≡ x+/n, and the intermediate time is x+
k = kδx+(k = 1, 2, . . . , n). This product expansion

is exact in the continuum limit of n → ∞. In practical calculations, the value of n could be determined as

to achieve a desired convergence on the final state. There are various numerical schemes in implementing

Eq. (3.5). The most straight forward implementation is to use a finite difference approximation,

i
|ψ; x+ + δx+〉I − |ψ; x+〉I

δx+
≈

1
2

VI(x+) |ψ; x+〉I ,

⇒ |ψ; x+ + δx+〉I ≈ [1 −
i
2

VI(x+
1 )δx+] |ψ; x+〉I .

(3.6)
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The resulting method is known as the explicit Euler method. The second-order approximation, also known

as the explicit midpoint method, has a faster convergence rate,

i
|ψ; x+ + δx+〉I − |ψ; x+ − δx+〉I

2δx+
≈

1
2

VI(x+) |ψ; x+〉I ,

⇒ |ψ; x+ + δx+〉I ≈ −iVI(x+
1 )δx+ |ψ; x+〉I + |ψ; x+ − δx+〉I .

(3.7)

We are interested in how eigenstates of the QCD Hamiltonian, P−QCD, evolve due to interactions with a

background field. To begin, let us first identify the eigenstates |β〉 and eigenvalues P−β of P−QCD, such that

P−QCD |β〉 = P−β |β〉 . (3.8)

We could then expand the physical state as a summation over the QCD eigenstates,

|ψ; x+〉I =
∑
β

cβ(x+) |β〉 , (3.9)

where cβ(x+) ≡ 〈β|ψ; x+〉I are the basis coefficients. The initial state at x+ = 0 can be specified by cβ(0) as a

column vector, and the solution of Eq. (3.4) can be written in the QCD eigenstate basis as

c(x+) = T+ exp
(
− i

∫ x+

0
dz+M(z+)

)
c(0) , (3.10)

where the matrix element is defined asMββ′(x+) ≡ 〈β|VI(x+)/2|β′〉. Once we know the wavefunction of the

state via c(x+), it is straightforward to evaluate observables from it.

A physical state can be expanded into the Fock space of infinite sectors. The coefficients of the Fock

expansion are the complete set of n-particle light-front wavefunctions. In practical calculations, Fock sector

truncation is needed and one usually implements basis truncation by assuming that higher Fock sectors give

decreasing contributions. In solving phenomenological bound state problem, basis truncation is also taken

as part of the model [61, 48, 3, 49, 50]. The time-dependent physical processes are also related to the Fock

space truncation. In the recent work on the nonlinear Compton scattering process [37], the Fock space is

truncated as |ephys〉 ≈ a |e〉 + b |eγ〉, thereby the excitation of the electron and the photon emission by the

background field are studied. In analogy to physical bound states, here we consider the single dressed quark

state as an expansion in the Fock space,

|qdressed〉 = a |q〉 + b |qg〉 + c |qgg〉 + d |qqq̄〉 + · · · . (3.11)
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This series includes the bare quark and its dressed states with gluons and sea quarks. We start our investiga-

tion of a single quark evolution with the leading Fock sector contribution. In the future, we will add the |qg〉

sector and study the gluon emission.

Within each Fock sector, the Fock particle has an infinite number of degrees of freedom, and truncations

of the basis space is also necessary. An optimal basis should preserve the symmetry of the system and

approximate the eigenfunctions of the Hamiltonian. One well-known basis is the discretized momentum

representation, where one expands the fields into plane waves. The discretized light-cone quantization

(DLCQ) approach takes this treatment [43, 131]. This basis choice is also advantageous for our study of the

single quark state, since the momentum state becomes the eigenstate of the QCD Hamiltonian, P−QCD. We

therefore carry out our calculation in the momentum basis. One other popular choice is the two-dimensional

harmonic oscillator (2D-HO) function. It preserves the rotational symmetry in the transverse plane and has

been taken in various applications of the BLFQ approach, including the positronium bound states [45], the

electron scatterings [37, 38] and the meson systems [48, 3, 49, 50].

3.2 Quark jet scattering off the Color Glass Condensate

We consider the quark-nucleus scattering at high rapidity, and treat it as a fundamental process of the

more complicated ep, eA, pp, pA and AA collisions at high energy. In the dipole picture of the electron-

nucleus deep inelastic scattering, a virtual photon fluctuates into a quark-antiquark pair, and subsequently

the quark dipole scatters off the nucleus [132, 133, 134, 135, 136]. In the proton-nucleus collisions, the

quark-nucleus scattering cross section may be related to the single inclusive hadron cross section through

the collinear factorization of the proton [137]. It is from this standpoint, we apply the tBLFQ approach to

solve the time evolution of a quark jet through a nuclear field.

We start by considering scattering of a high-energy quark moving in the positive z direction, on a high-

energy nucleus moving in the negative z direction, as shown in Fig. 3.1. The quark has momentum pµ and

p+ >> p−, p⊥ whereas the nucleus has momentum Pµ and P− >> P+, P⊥. We treat the quark state as

the system of interest, and the target as an external background field. The quark encounters the nuclear

field at x+ = 0 and leaves the field at x+ = ∆x+. The internal structure of the nucleus at the quark-gluon
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level has drawn tremendous efforts. In this work, we take its description by the Color Glass Condensate

model [138, 139, 140].

�

�

�- �+

�������

μ

|ψ��+〉

�+=�

�+=Δ�+

Figure 3.1 An illustration of a quark scattering on a nucleus in the spacetime diagram. The quark
is moving along the positive-z direction and the nucleus along the negative-z direction.
The blue line is the worldline of the quark, z = βqt with βq the speed of the quark. The
red band are worldlines of the nucleus, z = −βAt for one end and z = −βAt + d′ for the

other end. βA is the speed of the nucleus and d′ = d
√

1 − β2
A with d the width of the

nucleus in its rest frame. In the ultrarelativistic limit of βA → 1, the red band in the
diagram shrinks to a single line aligned with x+ = 0.

3.2.1 Background gluon field as the Color Glass Condensate

The CGC formalism takes into account the dynamics of large gluon densities at the small-x kinematic

region. The underlying approximation involved in the CGC effective theory of high energy scattering is the

eikonal approximation, i.e. small angle deflection of a high energy projectile traversing a medium. This

is a good approximation if the transverse momentum of the scattered parton is small. In the McLerran-

Venugopalan (MV) model [138, 139, 140], the classical small-x gluon field can be solved from the Yang-

Mills equation

DµF
µν = Jν , (3.12)
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µ, ν = +,−, x, y (see definitions of the light-front variables in the Appendix A.1). Jν = JνaTa (a = 1, 2, . . . , 8)

is the color current, where Ta are the color tensors. It has only one large component, Jνa = δν−ρa(~x⊥, x+),

where ρa(~x⊥, x+) is the density of color charges of the large-x partons. ρa(~x⊥, x+) does not depend on its

time x− because of time dilation. Moreover, due to Lorentz contraction of the target, the x+ dependence

is peaked around x+ = 0, and the field is often treated as a delta function at x+ = 0. Here we keep the x+

dependence to allow for an extended target. The valence charges are treated as stochastic variables satisfying

the correlation relation,

〈
ρa(~x⊥, x+)ρb(~y⊥, y+)

〉
= [gµ(x+)]2δabδ

2(~x⊥ − ~y⊥)δ(x+ − y+) . (3.13)

The dependence of the charge density in the x+ dimension is encoded in µ(x+), and we will take it as a

constant (i.e. µ(x+) = µ) in the range of the source. This correlation relation could be achieved by taking the

color charge density ρa(~x⊥, x+) to be a stochastic random variable with a local Gaussian distribution [138,

139],

f [ρ2
a(~x⊥, x+)] = exp

[
−

1
(gµ)2

∫
d2x⊥ρ2

a(~x⊥, x+)
]
.

The Gaussian form is reasonable when the color charges at high rapidity are uncorrelated and random [141,

142]. Any observable O should be evaluated as a configuration average over ρ,

〈O〉 =

∫
DρO[ρ] f [ρ2] . (3.14)

In covariant gauge ∂µAµ = 0,the field is solved as

(m2
g − ∇

2
⊥)A−a (~x⊥, x+) = ρa(~x⊥, x+) . (3.15)

The gluon mass mg is introduced to regularize the infrared (IR) divergence in the field, which imposes color

neutrality on the source distribution [143]. The field solved from this regularized Poisson equation can be

expressed in terms of the Green’s function

A−a (~x⊥, x+) =

∫
d2y⊥G0(~x⊥ − ~y⊥)ρa(~y⊥, x+) , (3.16)

where

G0(~x⊥ − ~y⊥) = −

∫
d2k⊥
(2π)2

e−i~k⊥·(~x⊥−~y⊥)

m2
g + ~k2

⊥

. (3.17)
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The field is logarithmically ultraviolet (UV) divergent. The divergence corresponds to the large momentum

modes in the nuclei wavefunction, which are the degrees of freedom not meant to be included in the classical

field. It is then natural to introduce a UV regulator [144]. In numerical calculations, there are several ways

to implement the UV cutoff. First, discretization of the transverse space would introduce a UV cutoff

automatically, as we will do in this work. Second, one can introduce an additional parameter ΛUV when

solving the gluon field as in Eq. (3.17), and the integral measure becomes
∫ Λ2

UV d2k⊥ [145]. Third, instead

of regulating the gluon field, one could impose the UV cutoff on the phase space of the quark.

Note that there is no x-evolution in the MV model, and the saturation scale is a constant for a fixed

charge density g2µ and Lη, the extension of the field along x+ [137, 146],

Q2
s =

(g2µ)2Lη
2π2 . (3.18)

This differs from more elaborate methods where the saturation scale is related to the gluon structure function

of the nucleus and depends on x [147, 148].

One could estimate the duration of the field Lη through experimental energy scales. Consider the quark

moves along the positive-a direction with speed βq and the nucleus moves along the negative-a direction with

speed −βA, as illustrated in Fig. 3.1. The starting point of the quark-nucleus interaction is at tstart = 0, zstart =

0, i.e. x+
start = 0. The end point of their interaction is at tend = d

√
(1 − βAβq)2/(βA + βq)2 − 1, zend = βqtstart.

Thereby,

∆x+ = (tend + zend) − (tstart + zstart) = d(βq + 1)

√
(1 − β2

A)(1 − β2
q)

βA + βq
. (3.19)

d is the width of the nucleus in its rest frame. If we consider a gold beam at the RHIC energy of
√

s =

100A GeV, and estimate its velocity according to γA = 1/
√

1 − β2
A =
√

s/m = 100 with m the mass of gold

nucleus, thereby βA = 0.9999. Its rest width is d = 2R ≈ 74 GeV−1. Assuming that the quark has the same

speed, i.e. βq = βA, we get ∆x+ ≈ 0.015 GeV−1, which is small just as we expected. However the color field

generated by the nucleus is identified as the small momentum degrees of freedom in the nucleus, and should

admit a smaller longitudinal momentum scaled by Bjorken-x, p− = xP−. The resulting Lorentz factor is

also scaled as γ = xγA. At x = 0.1, ∆x+ ≈ 1.48 GeV−1, and at x = 0.015, ∆x+ ≈ 71 GeV−1. We will take

Lη = 50 GeV−1 as the duration of the color field along x+ in our calculations.
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3.2.2 Basis construction

3.2.2.1 Discretization of the fields

We have shown the canonical quantization of the QCD fields on the light front in Section 1.3. Here

we want to write out the interaction vertex in the discretized momentum basis. Imagine that the system is

contained in a box of finite volume Ω = 2L(2L⊥)2. We have introduced two artificial length parameters,

L in longitudinal direction and L⊥ in transverse directions. The discretization is achieved by imposing

the periodic boundary condition for bosons and the anti-periodic boundary condition for fermions in the

coordinate space of a finite volume. Written explicitly, −L ≤ x− ≤ L, −L⊥ ≤ x1, x2 ≤ L⊥, and the

normalization volume is Ω = 2L(2L⊥)2. Correspondingly, in the momentum space,

p+ =


2π
2L

n, with n =
1
2
,

3
2
, . . . ,∞ for fermions ,

2π
2L

n, with n = 1, 2, . . . ,∞ for bosons ,
(3.20)

pi =
2π

2L⊥
ni, with n1, n2 = 1, 2, . . . ,∞ . (3.21)

The free fields are expanded as

Ψ̃Box
c (x) =

∑
ᾱ

1
2p+2L(2L⊥)2 [bᾱ,cu(p, λ)e−ip·x + d†ᾱ,cv(p, λ)eip·x] (3.22)

ÃBox
µ,a (x) =

∑
ᾱ

1
2p+2L(2L⊥)2 [aᾱ,aεµ(p, λ)e−ip·x + a†ᾱ,aε

∗
µ(p, λ)eip·x] (3.23)

The creation operators b†ᾱ, d†ᾱ and a†ᾱ create quarks, antiquarks and gluons with quantum numbers ᾱ respec-

tively. Each single particle state ᾱ is specified by four quantum numbers, ᾱ = {n, n1, n2, λ}, where λ is the

spin projection. They obey the following commutation and anti-commutation relations.

{bᾱ,c, b
†

ᾱ′,c′} = {dᾱ,c, d
†

ᾱ′,c′} = 2p+2L(2L⊥)2δᾱ,ᾱ′δc,c′ , [aᾱ, a
†

ᾱ′] = 2p+2L(2L⊥)2δᾱ,ᾱ′δa,a′ (3.24)

The commutation relation for the fermion fields in the box follows,

{Ψ̃Box
c (x), Ψ̃†Box

c′ (y)} =
∑
ᾱ,ᾱ′

1

4p+q+
(
2L(2L⊥)2

)2 [{bᾱ,c, b
†

ᾱ′,c′}u(p, λ)ū(q, λ′)γ0e−ip·x+iq·y

+ {d†ᾱ,c, dᾱ′,c′}v(p, λ)v̄(q, λ′)γ0eip·x−iq·y]

=
∑

p+,p⊥

1
2p+2L(2L⊥)2 [(/p + m)γ0e−ip·(x−y) + (/p − m)γ0eip·(x−y)]δc,c′

(3.25)
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3.2.2.2 The time evolution operator

To start, we consider the single quark Fock sector, |q〉. The light-front Hamiltonian, P−(x+) = P−QCD +

V(x+), consists of two terms. The QCD part is the kinetic energy of the quark field and we neglet the kinetic

energy of the background field,

P−QCD =

∫
dx− d2x⊥

1
2

¯̃Ψγ+ m2 − ∇2
⊥

i∂+
Ψ̃ . (3.26)

In the |q〉 sector, the V term contains the interactions between the quark field and the background field.

V =

∫
dx− d2x⊥

{
g ¯̃ΨγµT aΨ̃Aa

µ +
g2

2
¯̃Ψγi
Ai

γ+

i∂+
γ j
A jΨ̃

}
. (3.27)

The background field is solved in the covariant gauge of ∂µAµ = 0, and Aµ = δµ−Aµ, as discussed in

Section 3.2.1. The solution of the background field is consistent with the assumption that A+ = 0 in

deriving the light-front Hamiltonian in Appendix B. The interaction term becomes

V =

∫
dx− d2x⊥g ¯̃Ψγ+T aΨ̃Aa

+ . (3.28)

In the discretized momentum basis, the vertex interaction reads

V =
g(

2L(2L⊥)2
)2

4p+
1 p+

2

∑
α1,α2

∑
c1,c2

∫
dx− d2x⊥b†α2,c2

ū(p2, λ2)eip2·xγ+bα1,c1u(p1, λ1)e−ip1·x

T a
c2,c1
Aa

+(x⊥, x+)

=
g(

2L(2L⊥)2
)2

2
√

p+
1 p+

2

∑
α1,α2

∑
c1,c2

∫
dx− d2x⊥b†α2,c2

eip2·xbα1,c1e−ip1·xT a
c2,c1
Aa

+(x⊥, x+)δλ1,λ2 .

(3.29)

The spinor part is calculated in Appendix A.3. Integrate out x− first,

V =
g(

2L(2L⊥)2
)2

2
√

p+
1 p+

2

∑
α1,α2

∑
c1,c2

∫
d2x⊥2Lδp+

2 ,p
+
1
ei(p⊥2 −p⊥1 )·x⊥b†α2,c2

T a
c2,c1
Aa

+(x⊥, x+)δλ1,λ2 . (3.30)

The integration over x⊥ performs a Fourier transformation on the background field,
∫

d2x⊥Aa
+(~x⊥, x+)e−i~k⊥·~x⊥ =

Ãa
+(~k⊥, x+), thereby

V =
g

2L(2L⊥)42
√

p+
1 p+

2

∑
α1,α2

∑
c1,c2

δp+
2 ,p

+
1
b†α2,c2

bα1,c1T a
c2,c1
Ãa

+(~p⊥2 − ~p
⊥
1 , x

+)δλ1,λ2 . (3.31)
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The matrix element of the operator reads

〈ψq(p f , λ f , c f )|V |ψq(pi, λi, ci)〉

=
g

2L(2L⊥)42
√

p+
1 p+

2

∑
α1,α2

∑
c1,c2

〈0| b(p f , λ f , c f )
√

2L(2L⊥)22p+
f δp+

2 ,p
+
1
δλ1,λ2

T a
c2,c1
Ãa

+(~p⊥2 − ~p
⊥
1 , x

+)b†(p2, λ2, c2)b(p1, λ1, c1)
√

2L(2L⊥)22p+
i b†(pi, λi, ci) |0〉

=
g

(2L⊥)2

∑
α1,α2

∑
c1,c2

δp+
2 ,p

+
1
δλ1,λ2T a

c2,c1
Ãa

+(~p⊥2 − ~p
⊥
1 , x

+)δp f ,p2δλ f ,λ2δc f ,c2δp1,piδλ1,λiδc1,ci

=
g

(2L⊥)2 δp+
f ,p

+
i
δλ f ,λiT

a
c f ,ci
Ãa

+(~p⊥2 − ~p
⊥
1 , x

+) .

(3.32)

We can see immediately that the interaction with this background field could change the transverse mo-

mentum and the color of the quark, but it leaves the longitudinal momentum and the spin configuration

unchanged.

3.2.3 Numerical scheme

In the numerical calculation, the fields are color SU(3) matrices on the sites of a 3-dimensional discrete

space. The 2-dimensional transverse space is a lattice extending from −L to L for each side. The number of

transverse lattice sites is 2N given the lattice spacing a = L/N. As such, a vector ~r⊥ = (rx, ry) would read as,

ri = nia (i = x, y), ni = −N,−N + 1, . . . ,N − 1.

This space satisfies periodic boundary conditions. As such, the lattice point at the far boundary L = Na is

taken as the same as the one at the boundary −L. It follows that in the momentum space, for any vector,

~p⊥ = (px, py),

pi = kidp (i = x, y), ki = −N,−N + 1, . . . ,N − 1,

where dp ≡ π/L is the resolution in momentum space. The momentum space extends from −π/a to π/a.

Therefore, the transverse lattice introduces a pair of IR and UV cutoffs, λIR = π/L and λUV = Nπ/L.

The longitudinal dimension of the field x+ (note that this is the light-front time of the struck quark) is

discretized into a number of Nη layers. If the field extends Lη along x+, each layer would have an expansion

of τ = Lη/Nη. For example, the k-th (k = 1, 2, . . . ,Nη) layer extends as x+ = [(k − 1)τ, kτ].

To summarize, our calculation depends on the following numerical parameters.
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• g2µ, color charge density. We take different values and study how observables depend on it.

• mg, screening mass, the IR regulator. We will take mg = 0.1 GeV for most calculations and use

various values when studying the resulting effects.

• The transverse lattice: size L, number N and spacing a = L/N. In most cases, we take L = 50 GeV−1(=

9.87 fm) as estimated from the radius of the gold nucleus.

• The x+ direction: duration Lη, the number of layers Nη and interval τ = Lη/Nη. We take Lη =

50 GeV−1 and study the convergence on Nη.

In this discretized space, the correlation relation of the color charge as defined in Eq. (3.13) also takes a

discrete form as, 〈
ρa(nx, ny, k)ρb(n′x, n

′
y, k
′)
〉

= (gµ)2δab
δnx,n′xδny,n′y

a2

δk,k′

τ
. (3.33)

Note that the Kronecker delta dividing the discrete resolution replaces the Dirac delta in Eq. (3.13), and they

converge in the continuous limit of a→ 0 and τ→ 0.

3.3 Observables

In this section, we study various observables in the quark-nucleus sacttering obtained from the tBLFQ

formalism. We first study the total and elastic cross sections, and justify our calculation by comparing to

predictions in the eikonal limit. We then study the differential cross section and look into the time evolution

of the quark’s distribution in transverse coordinate space and color space. We further relax the eikonal

condition and explore sub-eikonal effects with finite p+.

3.3.1 The cross section

The cross section for an individual event can be calculated as the sum of transition amplitude square [34],

and it reads,

dσ
d2b

=
∑
φ f

|M(φ f ;ψi)|2 =
∑
φ f

|out 〈φ f |S |ψi〉in −out 〈φ f |ψi〉in |
2 . (3.34)
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ψi stands for the initial state, and φ f is the final state,
∑
φ f sums over the phase space of the final state. The

S in the equation is the evolution operator from the initial state to the final through a finite time transition,

and is different from the case where one takes the infinite time limit. In evaluating the cross section, one

should average over the color charge density ρ as in Eq. (3.14). This would give us the total cross section by

definition,

dσtot

d2b
=〈

∑
φ f

|M(φ f ;ψi)|2〉 . (3.35)

The total cross section is the summation of the elastic 2 → 2 contribution and the inelastic contributions

(2 → 3, 2 → 4, etc.), σtot = σels + σinels. To calculate the elastic cross section, one need to carry out

the configuration average on the amplitude level to get the elastic scattering amplitude first, and afterwards

square it [149].

dσels

d2b
=

∑
φ f

|〈M(φ f ;ψi)〉|2 . (3.36)

3.3.1.1 The eikonal limit of the cross sections

In the eikonal limit, the longitudinal momentum of the quark is infinite, p+ = ∞, thus the phase factor

e±ip−x+/2 (see text associated with Eq. (3.3)) is 1 and VI(x+) reduces to V(x+). In this limit, the cross sections

can be evaluated analytically as a function of the charge density g2µ, the interaction duration Lη (for which

the background field exists for x+ = [0, Lη]), and the IR and UV cutoffs of the gluon field, λIR = mg and

ΛUV . In this limit, the evolution operator is diagonal in the transverse coordinate space, and it is essentially

the Wilson line of the quark.

lim
p+=∞

〈~x′⊥|T+ exp[−
i
2

∫ Lη

0
dx+VI(x+)]|~x⊥〉 =T+ exp[−

i
2

∫ Lη

0
dx+V(x+, ~x⊥)]δ2(~x⊥ − ~x′⊥)

=T+ exp
(
− ig

∫ Lη

0
dx+A−a (~x⊥, x+)Ta

)
δ2(~x⊥ − ~x′⊥)

≡U(~x⊥)δ2(~x⊥ − ~x′⊥) .

(3.37)
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The physical observable such as the cross section is related to the configuration average of the Wilson line,

〈U(~x⊥)〉. The Taylor expansion of the time-ordered exponential function leads to

〈U(~x⊥)〉 =

∞∑
n=0

(−ig)n
∫ n∏

i=1

d2zi⊥G0(x⊥ − zi⊥)
∫ Lη

0
dz+

1

∫ Lη

z+
1

dz+
2 · · ·

∫ Lη

z+
n−1

dz+
n

〈ρa1(z+
1 , z1⊥)ρa2(z+

2 , z2⊥) · · · ρan(z+
n , zn⊥)〉Ta1Ta2 · · · Tan .

(3.38)

We can decompose the product of multiple charge densities 〈ρ1ρ2...ρn〉 into all possible contractions in the

case of the Gaussian average, according to the correlation function of ρ given in Eq. (3.13). It follows that

the configuration average of the odd number product of the charge densities, 〈ρ1ρ2...ρ2 j+1〉 would vanish,

and that of the even number product, 〈ρ1ρ2...ρ2 j〉, sums over all possible permutations

〈ρa1(z+
1 , z1⊥) · · · ρan(z+

n , zn⊥)〉

=


0, n is odd

〈ρa1(z+
1 , z1⊥)ρa2(z+

2 , z2⊥)〉 · · · 〈ρan−1(z+
n−1, zn−1⊥)ρan(z+

n , zn⊥)〉 + permutations, n is even
.

(3.39)

For the even number product, only the adjacent contractions survive under the time-ordered integrals. The

other two types of contractions, nesting and overlapping, all vanish.

〈ρa1(z−1 , z1⊥) · · · ρan(z−n , zn⊥)〉 → 〈ρa1(z−1 , z1⊥)ρa2(z−2 , z2⊥)〉 · · · 〈ρan−1(z−n−1, zn−1⊥)ρan(z−n , zn⊥)〉 .

We can see this in the simplest nontrivial case, the four source contraction. The nesting contraction vanishes

because of the delta function in Eq. (3.40).∫ Lη

0
dz+

1

∫ Lη

z+
1

dz+
2

∫ Lη

z+
2

dz+
3

∫ Lη

z+
3

dz+
4 〈ρa1(z+

1 , z1⊥)ρa4(z+
4 , z4⊥)〉 〈ρa2(z+

2 , z2⊥)ρa3(z+
3 , z3⊥)〉

=

∫ Lη

0
dz+

1

∫ Lη

z+
1

dz+
2

∫ Lη

z+
2

dz+
3

∫ Lη

z+
3

dz+
4 δa1a4[gµ(z+

1 )]2δ2(z1⊥ − z4⊥)δ(z+
1 − z+

4 )

× δa2a3[gµ(z+
2 )]2δ2(z2⊥ − z3⊥)δ(z+

2 − z+
3 )

=0 .

(3.40)
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The overlapping contraction also vanishes as in Eq. (3.41)∫ Lη

0
dz+

1

∫ Lη

z+
1

dz+
2

∫ Lη

z+
2

dz+
3

∫ Lη

z+
3

dz+
4 〈ρa1(z+

1 , z1⊥)ρa3(z+
3 , z3⊥)〉 〈ρa2(z+

2 , z2⊥)ρa4(z+
4 , z4⊥)〉

=

∫ Lη

0
dz+

1

∫ Lη

z+
1

dz+
2

∫ Lη

z+
2

dz+
3

∫ Lη

z+
3

dz+
4 δa1a3[gµ(z+

1 )]2δ2(z1⊥ − z3⊥)δ(z+
1 − z+

3 )

× δa2a4[gµ(z+
2 )]2δ2(z2⊥ − z4⊥)δ(z+

2 − z+
4 )

=0 .

(3.41)

Only the adjacent contraction survives as in Eq. (3.42)∫ Lη

0
dz+

1

∫ Lη

z+
1

dz+
2

∫ Lη

z+
2

dz+
3

∫ Lη

z+
3

dz+
4 〈ρa1(z+

1 , z1⊥)ρa2(z+
2 , z2⊥)〉 〈ρa3(z+

3 , z3⊥)ρa4(z+
4 , z4⊥)〉

=

∫ Lη

0
dz+

1

∫ Lη

z+
1

dz+
2 δa1a2[gµ(z+

1 )]2δ2(z1⊥ − z2⊥)δ(z+
1 − z+

2 )

×

∫ Lη

z+
2

dz+
3

∫ Lη

z+
3

dz+
4 δa3a4[gµ(z+

3 )]2δ2(z3⊥ − z4⊥)δ(z+
3 − z+

4 )

=

∫ Lη

0
dz+

1

∫ Lη

z+
1

dz+
3 δa1a2

[gµ(z+
1 )]2

2
δ2(z1⊥ − z2⊥)δa3a4

[gµ(z+
3 )]2

2
δ2(z3⊥ − z4⊥) .

(3.42)

By decomposing the multiple point correlator into two point correlators, the Wilson line in Eq. (3.38) follows

as,

〈U(~x⊥)〉 =

∞∑
n=0

(−ig2)
n
∫ n/2∏

i=1

d2z2i⊥G2
0(~x⊥ −~z2i⊥)

×
1
2

∫ Lη

0
dz+

1µ
2(z+

1 )
1
2

∫ Lη

z+
1

dz+
3µ

2(z+
3 ) · · ·

1
2

∫ Lη

z+
n−3

dz+
n−1µ

2(z+
n−1)T 2

a1
T 2

a3
· · · T 2

an−1

=

∞∑
n=0

1
(n/2)!

[
−g4

2

∫
d2z⊥G2

0(x⊥ − z⊥)
∫ Lη

0
dz+µ2(z+)T 2

a

]n/2
.

(3.43)
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The Green function is written explicitely in Eq. (3.17). By introducing an UV cutoff ΛUV , the transverse

integral becomes∫
d2z⊥G2

0(x⊥ − z⊥) =

∫
d2z⊥

[
−

∫ ΛUV d2k⊥
(2π)2

e−i~k⊥·(~x⊥−~z⊥)

m2
g + ~k2

⊥

]2

=

∫
d2z⊥

∫ ΛUV d2k⊥
(2π)2

e−i~k⊥·(~x⊥−~z⊥)

m2
g + ~k2

⊥

∫ ΛUV d2l⊥
(2π)2

ei~l⊥·(~x⊥−~z⊥)

m2
g + ~l2⊥

=(2π)2δ2(~k⊥ − ~l⊥)
∫ ΛUV d2k⊥

(2π)2

e−i~k⊥·~x⊥

m2
g + ~k2

⊥

∫ ΛUV d2l⊥
(2π)2

ei~l⊥·~x⊥

m2
g + ~l2⊥

=

∫ ΛUV d2k⊥
(2π)2

1

(m2
g + ~k2

⊥)2

=

∫ 2π

0
dθ

∫ ΛUV

0

kt dkt

(2π)2

1
(m2

g + k2
t )2

=
1

4π

[ 1
m2

g
−

1
Λ2

UV + m2
g

]
.

(3.44)

Though the background field admits an UV divergence in the transverse momentum space, the two point

correlation does not. By taking ΛUV → ∞, we have
∫

d2z⊥G2
0(x⊥ − z⊥) = 1/(4πm2

g). The Wilson line then

follows as

〈U(~x⊥)〉 = exp
[
−(N2

c − 1)
16πm2

gNc

∫ Lη

0
dz+g4µ2(z+)

]
. (3.45)

Note that the result is diagonal in the color space of the quark, by taking T 2
a = (N2

c − 1)/NcI3. In the cases

with constant color charge strength in the x+ = [0, Lη] duration, i.e. µ(x+) = µ, the Wilson line reads

〈U(~x⊥)〉 = exp
[−g4µ2(N2

c − 1)Lη
16πm2

gNc

]
. (3.46)

The derivation of the configuration average of the Wilson line correlator is similar,

〈U(~x⊥)U†(~x′⊥)〉 = exp
[−g4µ2(N2

c − 1)Lη
4Nc

2
∫

d2k⊥
(2π)2

1

(m2
g + ~k2

⊥)2
[1 − e−i~k⊥·(~x⊥−~x′⊥)]

]
. (3.47)

The amplitude of the transition from a quark state with momentum ~p⊥ to a state with momentum ~q⊥ reads,

M(~q⊥; ~p⊥) = out 〈~q⊥|S |~p⊥〉in −out 〈~q⊥|I|~p⊥〉in =

∫
d2x⊥

[
U(~x⊥) − 1

]
ei(~q⊥−~p⊥)·~x⊥ (3.48)
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The total cross section is calculated as

σtot = 〈

∫
d2q⊥
(2π)2 |M(~q⊥; ~p⊥)|2〉

= 〈

∫
d2q⊥
(2π)2

∫
d2x⊥

[
U(~x⊥) − 1

]
ei(~q⊥−~p⊥)·~x⊥

∫
d2x′⊥

[
U(~x′⊥) − 1

]
e−i(~q⊥−~p⊥)·~x′⊥〉

= 〈

∫
d2x⊥

[
U(~x⊥) − 1

]
e−i~p⊥·~x⊥

∫
d2x′⊥

[
U(~x′⊥) − 1

]
ei~p⊥·~x′⊥δ2(~x⊥ − ~x′⊥)〉

= 〈

∫
d2x⊥

[
U(~x⊥) − 1

]2
〉

=

∫
d2x⊥

(
〈U(~x⊥)U†(~x⊥)〉 − 〈U(~x⊥)〉 − 〈U†(~x⊥)〉 + 1

)
=

∫
d2x⊥2

(
1 − 〈U(~x⊥)〉

)
.

(3.49)

Since the averaged Wilson does not have dependence on the transverse coordinate as in Eq. (3.47), the

resulting cross section is proportional to the area of transverse space. It would be more convenient to study

the cross section as a ratio to the transverse space,

dσtot

d2b
= 2

{
1 − exp

[−g4µ2(N2
c − 1)Lη

16πm2
gNc

]}
. (3.50)

The last line also implies the optical theorem,

σtot =

∫
d2x⊥2ImA(~x⊥) , (3.51)

by recognizing the forward scattering amplitude as

A(~x⊥) = i[1 − 〈U(~x⊥)〉] . (3.52)

The elastic cross section can be calculated from the forward scattering amplitude as

σels =

∫
d2x⊥|A(~x⊥)|2 =

∫
d2x⊥[1 − 〈U(~x⊥)〉]2 . (3.53)
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This result is equivalent to that obtained by taking the configuration average of the transition amplitude first

and afterwards square it,

σels =

∫
d2q⊥
(2π)2 | 〈M(~q⊥; ~p⊥)〉 |2

=

∫
d2q⊥
(2π)2

∫
d2x⊥

[
〈U(~x⊥)〉 − 1

]
ei(~q⊥−~p⊥)·~x⊥

∫
d2x′⊥

[
〈U†(~x′⊥)〉 − 1

]
e−i(~q⊥−~p⊥)·~x′⊥

=

∫
d2q⊥
(2π)2

∫
d2x⊥

[
〈U(~x⊥)〉 − 1

]
ei(~q⊥−~p⊥)·~x⊥[ 〈U†(~x′⊥)〉 − 1

]
2π2δ2(~q⊥ − ~p⊥)

=

∫
d2x⊥

[
〈U(~x⊥)〉 − 1

]2 .

(3.54)

Note that since the Wilson line is translation invariant under the configuration average, the integral
∫

d2~x′⊥

leads to a delta function of the transverse momenta. The result is the same with that in Eq. (3.53). As for

the total cross section, we can write the elastic cross section as a ratio to the transverse area,

dσels

d2b
=

{
1 − exp

[−g4µ2(N2
c − 1)Lη

16πm2
gNc

]}2
. (3.55)

In the high energy limit, i.e. g2µ→ ∞ in Eqs. (3.50) and (3.55), the total cross section approaches 2 and the

elastic cross section approaches 1, and their ratio σtot/σels → 1/2. This corresponds to the standard ‘black

disc’ limit, enshrined in classical optics as the “Babinet’s principle”. Consider a disc that is totally ‘black’

in the sense that everything hitting it is completely absorbed, which gives the inelastic cross section. At

the same time this ‘absorption’ creates a ‘hole’ in the incoming wave front, leading to an elastic scattering

which has the same cross section. Therefore in this limit, σtot = σels + σinels = 2σels.

3.3.1.2 Numerical results

We first calculate the total and elastic cross sections in the eikonal limit and compare our results with

the eikonal expectations in Eqs. (3.50) and (3.55). We also study the sensitivity of the cross sections to the

parameters, N, L,Nη, and mg. We then relax the eikonal condition to finite p+, and explore potential effects.

The light-front kinetic energy of the quark is calculated as p− = (~p2
⊥ + m2

q)/p+, we use mq = 0.15 GeV in

the presented results. We have checked that using a quark mass in the range of mq = 0.05 − 4.50 GeV does

not make noticeable changes on the results with the current setting.

We then check the dependence of the cross sections on the lattice by varying N and L. Note that a

reasonable numerical grid should cover the physical range of interest. In this case, we should make sure
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that the numerical IR cutoff (λIR = π/L) is much smaller than the physical IR cutoff, ΛIR = mg, and the

numerical UV cutoff (λUV = Nπ/L) much bigger than ΛIR. Thus a suitable grid for our investigation should

satisfy:

π

L
� mg � N

π

L
. (3.56)

Fig. 3.2 represents the total and elastic cross sections as functions of g2µ at different N for a fixed

L. The results show a convergence on increasing N. We take the standard deviation of the 100 averaged

configurations as the uncertainty. Such uncertainty is smaller at larger N. This is not hard to imagine,

since with more sites on the lattice, the fluctuation of each configuration is more likely to smooth out when

averaged over an equal number of events. Most importantly, there is a good agreement between the tBLFQ

results and the eikonal analytical expectations calculated from Eqs. (3.50) and (3.55). This agreement helps

verify our formalism.
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Figure 3.2 The dependence on the transverse grid number N of the cross sections at L = 50 GeV−1.
The cross sections are calculated as functions of g2µ with Lη = 50 GeV−1, Nη = 4 and
p+ = ∞. The left panel is the total cross section and the right panel is the elastic
cross section. The solid lines are the eikonal predictions as calculated from Eqs. (3.50)
and (3.55). Each data point results from an average over 100 configurations, and the
standard deviation is taken as the uncertainty.

The dependence of the cross sections on the grid size L is also checked and shown in Fig. 3.3. The total

and elastic cross sections are calculated as functions of g2µ at different L for a fixed lattice spacing a =

L/N = 6.25 GeV−1. The results show agreements with the eikonal analytical expectations from Eqs. (3.50)
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and (3.55). We again observe that the lattice with a larger number of grids has smaller uncertainties. The

cross sections are not sensitive to the grid size.
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Figure 3.3 The dependence on the transverse grid length L of the cross sections. The lattice spacing
is fixed as a = L/N = 6.25 GeV−1 for these results. The cross sections of the quark are
plotted as functions of g2µ at Lη = 50 GeV−1, Nη = 4 and p+ = ∞. The solid lines are
the eikonal predictions as calculated from Eqs. (3.50) and (3.55). Results for each data
point are averaged over 100 configurations, and the standard deviation is taken as the
uncertainty.

We next show in Fig. 3.4 the dependence of the cross sections on the number of layers in the longitudinal

direction, Nη. An interesting “oscillation” pattern is observed when Nη = 1. At Nη = 1, the source and

therefore the gluon field along x+ is constant, this breaks one necessary ingredient for the CGC field: sources

are uncorrelated along x+, as in Eq. (3.13). It follows that in deriving the analytical expression of the cross

section, the contraction of multiple sources is no longer preserved, causing a nontrivial “oscillation”. In our

calculation, the x+ = [0, Lη] duration is divided into Nη layers, each lasting equally for τ = Lη/Nη. The

color charges from different layers belong to different nucleons, so they are uncorrelated with each other, as

in Eq. (3.33). Within each layer, the field is constant along x+. The continuum limit is restored at Nη → ∞,

as in Eq. (3.57).∫ +∞

−∞

dx+

∫ +∞

−∞

dy+ 〈ρa(x+, x⊥)ρb(y+, y⊥)〉 = g2µ2δabδ
2(~x⊥ − ~y⊥)

∫ +∞

−∞

dx+

∫ +∞

−∞

dy+ δk,k′

τ

= g2µ2δabδ
2(~x⊥ − ~y⊥)(

Nη∑
k=1

τ2)
1
τ

= g2µ2δabδ
2(~x⊥ − ~y⊥)Lη

(3.57)
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This “oscillation” gets strongly suppressed when Nη = 2, and for larger Nη(≥ 4), the physical results

converge to the analytical expectation and depend very little on Nη, as shown in Fig. 3.4.
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Figure 3.4 The dependence on Nη of the cross sections. Parameters for those results:
L = 50 GeV−1, N = 8, Lη = 50 GeV−1 and p+ = ∞. The left panel is the total cross
section and the right panel is the elastic cross section. The solid lines are the eikonal
predictions as calculated from Eqs. (3.50) and (3.55). Each data point is averaged over
100 configurations, and the standard deviation is taken as the uncertainty.

Another dependence of the cross sections comes from the IR cutoff ΛIR = mg. Fig. 3.5 presents the

cross sections evaluated at different mg on the same grid. These mg values are covered by the grid range

(see Eq. (3.56) and the associated discussion), and the cross sections agree well with the analytical eikonal

expectation. Though not shown in the figure, we found that when the mg value falls out of the accessible

range of the grid, the results would start to deviate from the expectations.

We have seen that the cross sections in the eikonal limit agree with the analytical expectations. We now

relax the condition to have finite p+ and see if this could affect the cross section. Fig. 3.6 presents the cross

sections at different p+ values. It turns out that even for very small p+, the cross section does not show

noticeable differences from the p+ = ∞ case.

We have seen that the calculated cross sections from tBLFQ agree well with the analytical eikonal expec-

tations in the eikonal limit. Our results also show good numerical convergences on the various parameters.

We did not observe noticeable differences by relaxing the eikonal condition. To study differences from the

eikonal limit, we will investigate other observables that depend on additional kinematic variables in the

following.



www.manaraa.com

121

L=50 GeV-1 , N=8

mg (GeV)

0.05

0.1

0.15

0.2

0. 0.1 0.2 0.3 0.4 0.5
0.0

0.4

0.8

1.2

1.6

2.0

2.4

g2μ(GeV3/2)

d
σ

to
t
/d

2
b

L=50 GeV-1 , N=8

mg (GeV)

0.05

0.1

0.15

0.2

0. 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

g2μ(GeV3/2)

d
σ

e
ls
/d

2
b

Figure 3.5 The dependence of the cross sections on mg. Parameters for those panels are:
N = 8,L = 50 GeV−1, Lη = 50 GeV−1, Nη = 4 and p+ = ∞. The transverse grid
parameters introduce a numerical IR cutoff λIR = π/L ≈ 0.06 GeV and UV cutoff

λUV = Nπ/L ≈ 0.5 GeV to the momentum space. The physical IR cutoff mg should
be inside the numerical range to obtain a valid result. The solid lines are the eikonal
predictions as calculated from Eqs. (3.50) and (3.55). Each data point is averaged over
100 configurations, and the standard deviation is taken as the uncertainty.

3.3.2 The differential cross section

The differential cross section dσ/(d2b d2 p⊥) is also of great interest to study. The p + A → h + X cross

section can be obtained by convoluting the total qA cross section with the distribution function of the quark

in the proton at factorization scales.

In Fig. 3.7, we present the tBLFQ calculations and compare with perturbative approximations. For a

weaker field, the leading order and next-to-leading order perturbations agree with our results. For stronger

fields and at small-p⊥ region, the perturbation approximation breaks down, whereas our results provide a

non-perturbative prediction.

We also check the dependence of the differential cross section on the grid parameters, N and L. Like the

total and the elastic cross sections, the dependence is not noticeable for grids covering the physical range.

The result is also not sensitive to the longitudinal resolution, Nη, as in Fig. 3.8. Unlike the cross sections, no

“oscillation” pattern appears even at Nη = 1.
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Figure 3.6 The dependence on p+ of the cross sections at L = 50 GeV−1 and N = 18. The cross
sections of the quark as functions of g2µ for Lη = 50 GeV−1 with Nη = 4. The solid
lines are the eikonal predictions (p+ = ∞). Results for each data point are averaged
over 100 configurations, and the standard deviation is taken as the uncertainty bar.

3.3.3 The evolution of the quark state

By carrying out the explicit time-evolution of the quark, we are able to access the intermediate states

and investigate the process of the quark-nucleus scattering. In particular, we study how the quark evolves in

two regimes, the transverse coordinate space and the color space.

To explore how the quark state evolves in the transverse coordinate space, we let the initial state of the

quark be a Gaussian packet Ce−|~r⊥ |
2/(0.2R0)2

, where R0 = 50 GeV−1 = 9.87 fm and C is the normalization

coefficient. Snapshots of the quark’s transverse coordinate distribution at a sequence of light-front times are

presented in Fig. 3.9. In the eikonal limit, i.e. p+ = ∞, the quark does not change its transverse location.

But with finite values of p+, the quark admits changes in its transverse coordinate distribution. In the plot of

a single event as of Fig. 3.9(b), the quark dissipates with a random pattern, which is related to the randomly

generated field. In the plot of averaged event as of Fig. 3.9(c), the quark spreads out more evenly, as expected

by averaging the field configurations.

We know that even without an external field, the quark should dissipate in the coordinate space with

a finite p+. Figure. 3.10 shows the evolution of the quark’s transverse coordinate distribution when no

external field exists. The quark spreads out slower with a more isotropic pattern compared with cases



www.manaraa.com

123

♢♢♢♢♢♢♢♢♢♢♢♢♢♢ ♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢ ♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢ ♢♢♢♢♢♢♢♢♢♢♢♢♢♢ ♢♢♢♢♢♢♢♢♢♢♢♢♢ ♢♢♢♢♢♢♢♢♢♢ ♢♢♢♢♢♢♢♢♢♢ ♢♢♢♢♢♢♢♢♢ ♢♢♢♢
♢♢♢♢♢

♢♢♢♢
♢♢♢♢

♢♢
♢♢

♢♢
♢♢

♢
♢

♢
♢
♢♢

♢
♢
♢

♢

♢
♢
♢

♢

♢

♢

♢

♢

♢

LO

LO+NLO

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

p⊥
2 (GeV2)

d
σ
G

e
V
-

2


d
2

b
d

2
p
⊥

g2μ=0.05GeV3/2

♢♢♢♢♢♢♢♢
♢♢♢♢♢

♢
♢♢♢♢♢♢♢♢♢

♢♢♢♢♢♢
♢♢♢♢♢♢♢♢♢

♢♢♢♢♢
♢♢

♢♢♢♢♢♢♢♢♢♢
♢♢♢♢

♢♢♢♢♢
♢♢♢

♢♢♢♢
♢

♢♢♢♢
♢♢♢

♢♢♢

♢♢
♢♢

♢
♢♢♢♢

♢

♢
♢

♢
♢♢

♢♢
♢♢

♢♢
♢
♢

♢
♢♢♢
♢

♢

♢

♢
♢

♢♢
♢♢

♢

♢

♢
♢

♢

♢
♢♢

♢

♢

♢

♢
♢♢

♢

♢

♢

LO

LO+NLO

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

p⊥
2 (GeV2)

d
σ
G

e
V
-

2


d
2

b
d

2
p
⊥

g2μ=0.14GeV3/2

♢♢♢♢♢♢♢♢
♢
♢

♢♢♢♢
♢♢♢♢♢♢♢♢♢♢♢♢

♢♢♢

♢♢
♢♢♢♢

♢♢
♢♢♢♢♢♢♢

♢
♢♢♢♢♢♢♢♢♢

♢
♢
♢
♢
♢

♢♢♢♢♢
♢♢♢

♢♢♢♢♢
♢♢♢♢

♢♢♢♢♢♢

♢
♢

♢♢♢
♢
♢♢
♢
♢

♢
♢♢♢♢

♢♢♢♢
♢♢

♢♢♢

♢♢♢♢
♢♢

♢♢♢♢♢♢
♢♢

♢♢
♢
♢♢♢

♢

♢♢♢♢♢♢
♢♢♢

♢♢
♢♢
♢♢♢
♢♢
♢
♢♢
♢♢♢♢♢♢♢♢

♢

LO

LO+NLO

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

p⊥
2 (GeV2)

d
σ
G

e
V
-

2


d
2

b
d

2
p
⊥

g2μ=0.49GeV3/2

✶✶✶✶✶✶ ✶✶✶✶✶✶✶✶ ✶✶✶✶✶✶✶✶✶ ✶✶✶✶✶✶✶✶✶ ✶✶✶✶✶✶✶✶✶ ✶✶✶✶✶✶✶✶✶ ✶✶✶✶✶✶✶✶✶ ✶✶✶✶✶✶✶✶ ✶✶✶✶✶✶✶✶ ✶✶✶✶✶✶
✶✶

✶
✶
✶✶✶

✶

✶
✶
✶
✶

✶

✶

✶

✶

✶✶
LO

LO+NLO

0 20 40 60 80 100
0.000

0.002

0.004

0.006

0.008

0.010

p⊥
2 (GeV2)

d
σ
G

e
V
-

2


d
2

b
d

2
p
⊥

g2μ=0.49GeV3/2

♢♢♢♢♢
♢♢♢♢♢♢
♢♢
♢♢♢♢
♢♢♢
♢♢♢

♢
♢♢

♢
♢
♢♢♢♢

♢

♢
♢
♢♢
♢♢♢

♢
♢

♢♢
♢♢
♢♢

♢

♢

♢♢
♢♢

♢
♢

♢
♢
♢♢
♢
♢

♢
♢♢
♢

♢

♢
♢♢♢

♢

♢♢
♢

♢♢
LO

LO+NLO

0.01 0.1 1
0.01

0.05

0.10

0.50

1

5

10

p⊥
2 (GeV2)

d
σ
G

e
V
-

2


d
2

b
d

2
p
⊥

g2μ=0.05GeV3/2

♢♢
♢♢♢
♢♢♢
♢♢
♢
♢
♢♢
♢
♢

♢♢
♢♢
♢♢♢

♢♢♢
♢♢♢
♢♢♢

♢♢
♢♢
♢♢
♢♢
♢
♢♢
♢♢♢♢♢

♢♢
♢♢
♢
♢
♢♢♢
♢♢♢
♢♢

♢♢
♢♢
♢
♢♢
♢♢♢♢
♢♢

♢
♢
♢♢

♢♢♢
♢♢♢

♢
♢

♢♢
♢
♢♢♢♢
♢

♢
♢

♢
♢♢
♢♢♢♢

♢♢
♢♢

♢♢
♢♢♢

♢

♢
♢♢

♢♢♢♢

♢
♢

♢♢
♢♢
♢♢

♢
♢

♢♢
♢♢

♢
♢

♢♢
♢♢
♢
♢♢

♢♢♢♢
♢♢♢♢♢♢♢♢

♢♢

LO

LO+NLO

0.01 0.1 1
0.01

0.05

0.10

0.50

1

5

10

p⊥
2 (GeV2)

d
σ
G

e
V
-

2


d
2

b
d

2
p
⊥

g2μ=0.14GeV3/2

♢♢♢♢♢♢♢♢♢♢
♢♢
♢♢♢♢ ♢♢♢♢♢♢♢♢♢♢♢
♢♢♢♢♢

♢♢♢♢♢♢
♢♢♢♢♢♢♢♢♢♢ ♢♢♢♢♢♢♢

♢♢♢♢♢♢♢ ♢♢♢♢♢♢
♢♢♢♢♢♢♢ ♢♢♢♢

♢♢♢♢♢♢
♢♢

♢♢♢♢♢♢♢♢ ♢♢♢♢♢♢♢♢♢ ♢♢♢♢♢
♢♢♢♢ ♢♢♢♢♢♢♢♢ ♢♢♢♢♢♢♢♢ ♢♢♢♢♢♢ ♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

LO

LO+NLO

0.01 0.1 1
0.01

0.05

0.10

0.50

1

5

10

p⊥
2 (GeV2)

d
σ
G

e
V
-

2


d
2

b
d

2
p
⊥

g2μ=0.49GeV3/2

✶✶
✶✶✶
✶✶✶✶
✶✶
✶✶
✶✶✶
✶

✶
✶✶✶
✶✶✶✶
✶✶✶✶✶✶

✶✶✶
✶✶✶✶✶✶

✶✶✶✶✶
✶✶✶
✶✶

✶✶✶
✶✶✶✶✶

✶
✶✶
✶
✶✶

✶✶
✶✶
✶✶✶✶✶✶✶

✶
✶

✶✶
✶✶✶

✶✶✶✶✶

✶
✶✶✶

✶✶
✶✶✶✶

✶✶

✶✶✶
✶✶✶✶
✶✶
✶✶✶

✶✶✶✶ ✶✶
✶✶✶✶✶

✶
✶✶

✶✶
✶✶✶✶
✶

✶
✶✶✶✶

✶✶
✶✶✶✶✶

✶
✶✶✶

✶✶
✶✶
✶✶✶

✶✶✶
✶✶

✶✶

LO

LO+NLO

0.1 1 10 100

10
-5

0.001

0.100

10

p⊥
2 (GeV2)

d
σ
G

e
V
-

2


d
2

b
d

2
p
⊥

g2μ=0.49GeV3/2

Figure 3.7 The differential cross section of the qA scattering at different g2µ. The tBLFQ results are
plotted as empty diamonds. The presented data are averaged over 50 events. Parameters
for those panels, N = 18, L = 50 GeV−1, mg = 0.1 GeV, Lη = 50 GeV−1 and Nη = 4.
g2µ = 0.05, 0.14, 0.49 GeV3/2 for the first three panels from left to right. The fourth
panel presents the results calculated at the same g2µ = 0.49 GeV3/2 as in the third
panel, but it is evaluated on the lattice of N = 18, L = 5 GeV−1 to reveal the large
p2
⊥ range. The top panels are plotted on a linear scale, and the bottom panels are on

log-log scales. The vertical dashed line is at the saturation scale Q2
s = (g2µ)2Lη/(2π2).

LO (NLO) is the leading (next-to leading) order expansion on Q2
s/p2
⊥.

where the external field participates. To study the effect of the external field quantitatively, we calculate the

expectation value of the quark’s transverse coordinate |~r⊥| in cases with and without external fields.

We first show how the energy scale of the quark, p+, affects the evolution. Fig. 3.11 presents the

expectation value of the quark’s transverse coordinate as a function of light-front time at various p+. It

shows that the CGC field promotes the quark’s dissipation in the transverse plane compared with the no-

field case (g2µ = 0). The quark spreads faster with smaller p+.

We also check the sensitivity of the quark’s evolution to grid parameters. Results at different lattice size

L with a fixed lattice spacing of a = L/N = 5 GeV−1 = 0.99 fm are compared in Fig. 3.12. We find that the

evolution is not very sensitive to the lattice size over the range investigated here.

We study the dependence on the grid number N in Fig. 3.13. When the external field is absent or

weak, the evolution of |r⊥| agrees among cases with different N. However, with a strong external field, the
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Figure 3.8 The differential cross section of the qA scattering with different Nη. The presented data
are averaged over 50 events. Parameters for those panels: N = 18, L = 50 GeV−1,
mg = 0.1 GeV, Lη = 50 GeV−1 and g2µ = 0.05 GeV3/2. The left panel is plotted on
a linear scale, and the right panel is on log-log scales. The vertical dashed line is at the
saturation scale Q2

s = (g2µ)2Lη/(2π2) ≈ 0.006 GeV2. LO (NLO) is the leading (next-to
leading) order expansion on Q2

s/p2
⊥.

evolution of |r⊥| diverges, as seen in Fig. 3.13(a). This divergence is expected from the ultraviolet divergent

gluon field, as discussed in text associated with Eq. (3.17). We verify this source of divergence by imposing

a UV cutoff on the gluon field. The results become better converged with the UV cutoff, as presented in

Fig. 3.13(b).

The quark admits changes in the transverse coordinate at finite p+, and this is achieved through the phase

factor e±i 1
2 p−x+

with p− = (~p2
⊥ + m2

q)/p+. One may then expect that using different values of the quark mass

might also affect this effect. We show that the influence from the quark mass is very small by testing with

mq = 0.05, 0.15, 0.3 and 4.5 GeV in Fig. 3.14.

In the color space, the quark evolves toward a uniformly distributed state, |ψc|
2 → 1/3, (c = 1, 2, 3). This

is shown in Fig. 3.15. The quark evolves faster in the color space with larger g2µ. This is expected since

the background field generated from the source with a larger g2µ is also stronger, therefore applies more

influence to the quark.

3.3.4 The profiled CGC field

The CGC field we adopt so far is uniform in the transverse plane. In reality, the field generated from a

large nucleus could be stronger at the center than on the perimeter. We take this into consideration by using

a Gaussian profile and a Woods-Saxon profile to scale the CGC field in the transverse coordinate space. In
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(b) Single event evolution of the quark’s transverse coordinate distribution at p+ = 10 GeV
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(c) Evolution of the quark’s transverse coordinate distribution at p+ = 10 GeV, averaged over 50 events

Figure 3.9 The evolution of the quark’s transverse coordinate distribution. The initial state of the
quark is distributed as Ce−|~r⊥ |

2/(0.2L)2
, where C is the normalization coefficient. From

left to right, the transverse coordinate distribution of the quark is shown at a sequential
interaction time calculated by tBLFQ. Parameters in those panels: Lη = 50 GeV−1,
Nη = 4, mg = 0.1 GeV, N = 18, L = 50GeV−1, g2µ = 0.486 GeV−3/2. Top row:
p+ = ∞, bottom two rows: p+ = 10 GeV. The second row shows the result of a single
event. The third row shows the average result of 50 events.
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Figure 3.10 The evolution of the quark’s transverse coordinate distribution when no source exists.
The initial state of the quark is distributed as Ce−|~r⊥ |

2/(0.2L)2
, where C is the normaliza-

tion coefficient. From left to right, the transverse coordinate distributions of the quark
are shown at a sequential interaction time calculated by tBLFQ. Parameters in those
panels: Lη = 50 GeV−1, Nη = 4, mg = 0.1 GeV, N = 18, L = 50GeV−1, p+ = 10 GeV.
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Figure 3.11 The evolution of the expectation value of the quark’s transverse coordinate at differ-
ent p+. The initial state of the quark is distributed as Ce−|~r⊥ |

2/(0.2L)2
, where C is the

normalization coefficient. From left to right, the first panel is calculated without an
external field while the following three panels are calculated with increasing color
charge density g2µ. The results are averaged over 10 events. Parameters in those
panels: Lη = 50GeV−1, Nη = 4, mg = 0.1GeV, N = 18, L = 50GeV−1.
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Figure 3.12 The evolution of the expectation value of the quark’s transverse coordinate at different
lattice size with a fixed lattice spacing of a = L/N = 5 GeV−1. Parameters in those
panels: Lη = 50GeV−1, Nη = 4, mg = 0.1GeV, p+ = 10 GeV. The initial state of
the quark is distributed as Ce−|~r⊥ |

2/(0.2∗50 GeV−1)2
, where C is the normalization coeffi-

cient. From left to right, the first panel is calculated without an external field while the
following three panels are calculated with increasing color charge density g2µ. The
results are averaged over 10 events.

the Gaussian form, the scale factor reads

fGaussian(~r⊥) = e−(r⊥/R0)2
, (3.58)

where R0 is taken as the nuclear radius. For the gold nucleus, R0 = 37 GeV−1. In the Woods-Saxon form,

the scale factor reads

fWoods-Saxon(~r⊥) =
1

1 + e(r⊥−R0)/s . (3.59)

We use the usual parametrization, where R0 is taken as the nuclear radius and s = 3.2 GeV−1 is the surface

diffuseness [150]. An example of the source charge distribution in the transverse plane ~r⊥ with different

transverse profiles is obtained by single event simulation, and is presented in Fig. 3.16.

We revisited the quark’s evolution, the cross section and the p⊥-dependent differential cross section in

Figs. 3.17, 3.18 and 3.19. We see that there is not much difference in the total cross section and the evolution

of |r⊥|. The differential cross section is more peaked around p⊥ = 0 when the fields are scaled as may be

expected due to reduced scattering in the peripheral regions.
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Figure 3.13 The evolution of the expectation value of the quark’s transverse coordinate at
L = 50 GeV−1. The initial state of the quark is Ce−|~r⊥ |

2/(0.2L)2
, where C is the nor-

malization coefficient. From left to right, the first panel is calculated without an
external field while the following three panels are calculated with increasing color
charge density g2µ. The results are averaged over 10 events. Parameters in those
panels: Lη = 50GeV−1, Nη = 4, mg = 0.1 GeV, p+ = 10 GeV. In the bottom
row, we impose a UV cutoff when solving the gluon field by setting Ã(~k⊥) = 0 for
|~k⊥| ≥ ΛUV = 0.2 GeV.
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Figure 3.14 The evolution of the expectation value of the quark’s transverse coordinate with dif-
ferent quark mass and charge densities. Parameters in those panels: L = 50 GeV−1,
N = 18, Lη = 50GeV−1, Nη = 4, mg = 0.1 GeV, p+ = 10 GeV. The initial state of
the quark is distributed as Ce−|~r⊥ |

2/(0.2∗50 GeV−1)2
, where C is the normalization coeffi-

cient. From left to right, the first panel is calculated without an external field while the
following three panels are calculated with increasing color charge density g2µ. The
results are averaged over 10 events.

3.4 Conclusions and outlook

In this Chapter, we have made the first attempt of the tBFLQ approach to a QCD problem, the quark-

nucleus scattering. We are able to access the wavefunction of the quark at any intermediate time during the

evolution. This provides us with an opportunity to carry out detailed studies of the time-dependent process.

Our results of the total and cross sections are in good agreement with the analytical expectations under

the eikonal condition p+ = ∞. In the sub-eikonal case with a finite p+, the cross sections do not show

noticeable deviation from the eikonal limit. However, there are clear sub-eikonal effects shown from the

distribution of the quark’s transverse coordinate. At finite p+, the quark admits changes in its transverse

coordinate distribution.

We take the Color Glass Condensate model as the background field of the nucleus, and keep the dominant

field component (A−) in our calculation. In the future, we expect to include the transverse component of the

color field (A⊥) and investigate its effect on the spin of the quark. We also plan to extend the Fock space to

|q〉 + |qg〉 and study the gluon radiation.

We foresee more applications of the tBLFQ approach to scattering processes in the future, especially the

dipole-nucleus scattering and meson productions in heavy-ion collisions.
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Figure 3.15 The evolution of the quark’s distribution in the color space. The results are averaged
over 50 events. Parameters in those panels: N = 18, L = 50 GeV−1, Lη = 50 GeV−1,
Nη = 4, mg = 0.1 GeV. From left to right, the first panel is calculated without an
external field while the following three panels are calculated with increasing color
charge density g2µ. The top panels are results obtained in the eikonal limit (p+ = ∞),
the bottom row is obtained wtih p+ = 10 GeV. The initial state of the quark is a
single color state (c = 1) with space distribution as Ce−|~r⊥ |

2/(0.2L)2
, where C is the

normalization coefficient. The dashed line marks the average probability of the three
colors: 0.33.
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Figure 3.16 Single-event simulation of source charges in the transverse plane ~r⊥ with different
transverse profiles. From left to right, the corresponding profiles are uniform, Gaus-
sion and Woods-Saxon. See Eqs. (3.58) and (3.59) and associated text for more in-
formation. Parameters in those panels: N = 18, L = 50 GeV−1, Lη = 50 GeV−1 and
g2µ = 0.14 GeV3/2.
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Figure 3.17 The total and elastic cross sections at the CGC fields with different profiles. the initial
state of the quark as ~p⊥ = ~0⊥. The results are averaged over 100 events. Parameters
in those panels: N = 18, L = 50 GeV−1, Lη = 50 GeV−1, Nη = 4, mg = 0.1GeV,
p+ = 10GeV.
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Figure 3.19 The evolution of the expectation value of the quark’s transverse coordinate at different
profiles. The initial state of the quark is Ce−|~r⊥ |

2/(0.2L)2
, where C is the normalization

coefficient. The results are averaged over 100 events. Parameters in those panels:
N = 18, L = 50 GeV−1, Lη = 50 GeV−1, Nη = 4, mg = 0.1GeV, p+ = 10GeV.
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CHAPTER 4. SUMMARY AND OUTLOOK

In this thesis, we have investigated quantum chromodynamics in the non-perturbative regime with the

light-front Hamiltonian formalism. Our explorations are from two aspects, the hadron bound states and the

high energy scattering.

We have reviewed the formalism of solving the quarkonium system with the effective Hamiltonian ap-

proach and discussed how one could extend the calculation from the valence Fock sector to higher Fock

space. We then studied the properties of the quarkonium through electromagnetic processes, via the elas-

tic form factors, the radiative transition form factors and the decay widths. In light-front dynamics, the

electromagnetic transition amplitudes between mesons are usually computed with the ”+” current and in

the Drell-Yan frame for simplicity. Though in principle, calculations of the Lorentz invariant form factors

should not depend on the choice of current components or reference frames, practical calculations could

receive such spurious dependence when rotational symmetry is broken by Fock space truncation. We were

therefore motivated to make a complete study by analyzing all four current components, with all possible

magnetic projections of the states, and in a general reference frame. Based on our analysis, we made sugges-

tions on choosing the preferred currents and frames in calculating the elastic form factor, the M1 transition

form factor, and the decay constants. We also carried out numerical calculations of those quantities with

light-front wavefunctions calculated from the valence Fock sector and compared with experimental data and

other theoretical calculations. The formalism of our investigations could also apply to light mesons and can

be extended to baryons.

The scattering of a light projectile, proton or electron with large nuclei helps us understand QCD dy-

namics from a dynamical viewpoint. Intrigued by the strong interaction between the fast quarks and the

nucleus, we studied the process of a quark jet scattering off a nuclear field. We treat the nuclear field as a

background using the Color Glass Condensate model. We carry out an explicit evolution for the quark by

decomposing the time-evolution operator into small time increments. In this way, we calculate the cross
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section, and moreover, we get access to the intermediate states and witness the dynamical processes such as

color rotation and momentum transfer. By relaxing the longitudinal momentum of the quark to finite values,

we also revealed the sub-eikonal effect on the quark’s transverse location. The framework in this study also

shows exciting possibilities for future applications of time-dependent approaches in the non-perturbative

quantum field theory.

The two studies in this thesis together investigate the non-perturbative quantum field theory on the light

front. We foresee future developments in two directions. The first direction is to include higher Fock sectors

in our calculations. We have outlined the framework of solving the heavy quarkonium system in the |qq̄〉 +

|qq̄qq̄〉 sectors with the BLFQ approach. Its realization will not only result in more realistic representations

of quantum states, but also allow for a more complete treatment of a variety of processes, especially the

radiative transition and the strong decay. For the quark-nucleus scattering, inclusion of higher Fock sectors

such as the |qg〉 sector would allow us study the gluon emission from the non-perturbative aspect. The

second direction is to extend the range of applications. Following the initial efforts on positronium and

heavy quarkonium, the works on heavy-light mesons, light mesons, baryons and glueballs are underway.

We also hope to apply the time-dependent light-front Hamiltonian approach to address strong scattering

problems such as the dipole-nucleus scattering and particle production in the fields of two colliding nuclei.
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APPENDIX A. CONVENTIONS

A.1 Light-Front coordinates

The contravariant four-vectors of position xµ are written as xµ = (x+, x−, x1, x2), where x+ = x0 + x3

is the light-front time, x− = x0 − x3 is the longitudinal coordinate, and ~x⊥ = (x1, x2) are the transverse

coordinates. We sometimes write the transverse components with subscript x (y) in place of 1 (2), for

example ~r⊥ = (rx, ry).

The covariant vectors are obtained by xµ = gµνxν, with the metric tensors gµν and gµν. The nonzero

components of the metric tensors are,

g+− = g−+ = 2, g+− = g−+ =
1
2
, gii = gii = −1 (i = 1, 2) . (A.1)

Scalar products are

a · b = aµbµ = a+b+ + a−b− + a1b1 + a2b2 =
1
2

(a+b− + a−b+) − ~a⊥ · ~b⊥ . (A.2)

Derivatives are written as

∂+ =
∂

∂x+
=

∂

2∂x−
=

1
2
∂−, ∂− =

∂

∂x−
=

∂

2∂x+

=
1
2
∂+ . (A.3)

The Levi-Civita tensor is defined as

εµνρσ =
1√
− det g



+1, if µ, ν, ρ, σ is an even permutation of −,+, 1, 2

−1, if µ, ν, ρ, σ is an odd permutation of −,+, 1, 2

0, other cases

(A.4)

with
√
− det g = 1

2 .

The full four-dimensional integral is∫
d4x =

∫
dx0 dx1 dx2 dx3 =

1
2

∫
dx+ dx− d2x⊥ =

∫
d3x dx+ , (A.5)



www.manaraa.com

145

where we also define the volume integral as∫
d3x ≡

∫
dx+ d2x⊥ =

1
2

∫
dx− d2x⊥ . (A.6)

In the momentum space, the Lorentz invariant integral is,∫
d4 p

(2π)4 θ(p+)(2π)δ2(p+ p− − ~p2
⊥ − m2) =

1
2

∫
dp+ dp− d2 p⊥

(2π)4 θ(p+)(2π)δ2(p+ p− − ~p2
⊥ − m2)

=

∫
d2 p⊥ dp+

(2π)32p+
θ(p+)

(A.7)

The Fourier transform of a function f (~r⊥) and the inverse transform are defined as

f (~r⊥) =

∫
d2 p⊥
(2π)2 ei~p⊥·~r⊥ f̃ (~p⊥), f̃ (~p⊥) =

∫
d2~r⊥e−i~p⊥·~r⊥ f (~r⊥) . (A.8)

A.2 γ matrices

The Dirac matrices are four unitary traceless 4 × 4 matrices:

γ0 = β =

0 −i

i 0

 , γ+ =

0 0

2i 0

 , γ− =

0 −2i

0 0

 , γi =

−iσ̂i 0

0 iσ̂i

 . (A.9)

They are expressed in terms of the 2 × 2 Pauli matrices,

σ̂1 = σ2 =

0 −i

i 0

 , σ̂2 = −σ1 =

 0 −1

−1 0

 . (A.10)

Note that γ3 = γ+ − γ0. It is also convenient to define γR ≡ γ1 + iγ2 and γL ≡ γ1 + iγ2. The chiral matrix is

γ5 = iγ0γ1γ2γ3. Some useful relations,

γ1γ+γ1 = γ2γ+γ2 = γ+, γ1γ+γ2 = −γ2γ+γ1 = iγ+ (A.11)

γ0γµ = γµ†γ0, {γµ, γν} = 2gµνI (A.12)

ακ = γ0γκ, (α1)
2

= (α2)
2

= I, α1α2 = −α1α2 (A.13)
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Combinations of Dirac matrices as projection operators,

Λ± =
1
4
γ∓γ± =

1
2
γ0γ± =

1
2

(I ± α3) . (A.14)

They have the following properties,

Λ+ + Λ− = I , (Λ±)2
= Λ± , Λ±Λ∓ = 0 , (Λ±)† = Λ± ,

αiΛ± = Λ∓αi , γ0Λ± = Λ∓γ0 .

(A.15)

A.3 Spinors

The u, v spinors are defined as,

u(p, λ =
1
2

) =
1
√

p+
(p+, 0, imq, ipx − py)ᵀ ,

u(p, λ = −
1
2

) =
1
√

p+
(0, p+,−ipx − py, imq)ᵀ ,

ū(p, λ =
1
2

) =
1
√

p+
(mq, px − ipy,−ip+, 0) ,

ū(p, λ = −
1
2

) =
1
√

p+
(−px − ipy,mq, 0,−ip+) ,

(A.16)

and

v(p, λ =
1
2

) =
1
√

p+
(p+, 0,−imq, ipx − py)ᵀ ,

v(p, λ = −
1
2

) =
1
√

p+
(0, p+,−ipx − py,−imq)ᵀ ,

v̄(p, λ =
1
2

) =
1
√

p+
(−mq, px − ipy,−ip+, 0) ,

v̄(p, λ = −
1
2

) =
1
√

p+
(−px − ipy,−mq, 0,−ip+) .

(A.17)

They satisfy the Dirac equations:

ū(p, λ)(/p + mq) = 0, (/p − mq)u(p, λ) = 0 ; (A.18)

v̄(p, λ)(/p − mq) = 0, (/p + mq)v(p, λ) = 0 . (A.19)

They follow normalization relations,

u(p, λ1)ū(p, λ2) = 2mqδλ1,λ2 , v(p, λ1)v̄(p, λ2) = −2mqδλ1,λ2 , (A.20)

u(p, λ1)v̄(p, λ2) = v̄(p, λ1)u(p, λ2) = 0 (A.21)



www.manaraa.com

147

Gordon identities:

2mqū(p′, λ′)γµu(p, λ) = ū(p′, λ′)[(p′ + p)µ −
1
2

[γµ, γν](p′ − p)ν]u(p, λ) (A.22)

A.3.1 spinor part in the quark current

ū(p2, λ2)γ+u(p1, λ1) = 2
√

p+
1 p+

2 δλ2,λ1

ū(p2, λ2)γ−u(p1, λ1) =
2√

p+
1 p+

2



m2 + pR
1 pL

2 , λ1 = +, λ2 = +

m(pL
2 − pL

1 ), λ1 = −, λ2 = +

m(pR
1 − pR

2 ), λ1 = +, λ2 = −

m2 + pL
1 pR

2 , λ1 = −, λ2 = −

ū(p2, λ2)γxu(p1, λ1) =
1√

p+
1 p+

2



p+
2 pR

1 + p+
1 pL

2 , λ1 = +, λ2 = +

m(p+
2 − p+

1 ), λ1 = −, λ2 = +

m(p+
1 − p+

2 ), λ1 = +, λ2 = −

p+
2 pL

1 + p+
1 pR

2 , λ1 = −, λ2 = −

ū(p2, λ2)γyu(p1, λ1) =
1√

p+
1 p+

2



i(−p+
2 pR

1 + p+
1 pL

2 ), λ1 = +, λ2 = +

−im(p+
2 − p+

1 ), λ1 = −, λ2 = +

−im(p+
2 − p+

1 ), λ1 = +, λ2 = −

i(p+
2 pL

1 − p+
1 pR

2 ), λ1 = −, λ2 = −

(A.23)
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By defining pR ≡ px + ipy, pL ≡ px − ipy,

ū(p2, λ2)γRu(p1, λ1) =
2√

p+
1 p+

2



p+
2 pR

1 , λ1 = +, λ2 = +

m(p+
2 − p+

1 ), λ1 = −, λ2 = +

0, λ1 = +, λ2 = −

p+
1 pR

2 , λ1 = −, λ2 = −

ū(p2, λ2)γLu(p1, λ1) =
2√

p+
1 p+

2



p+
1 pL

2 , λ1 = +, λ2 = +

0, λ1 = −, λ2 = +

m(p+
1 − p+

2 ), λ1 = +, λ2 = −

p+
2 pL

1 , λ1 = −, λ2 = −

(A.24)
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A.3.2 spinor part in the antiquark current

v̄(p2, λ2)γ+v(p1, λ1) = 2
√

p+
1 p+

2 δλ2,λ1

v̄(p2, λ2)γ−v(p1, λ1) =
2√

p+
1 p+

2



m2 + pL
1 pR

2 , λ1 = +, λ2 = +

m(pR
2 − pR

1 ), λ1 = −, λ2 = +

m(pL
1 − pL

2 ), λ1 = +, λ2 = −

m2 + pR
1 pL

2 , λ1 = −, λ2 = −

v̄(p2, λ2)γRv(p1, λ1) =
2√

p+
1 p+

2



p+
1 pR

2 , λ1 = +, λ2 = +

0, λ1 = −, λ2 = +

m(p+
1 − p+

2 ), λ1 = +, λ2 = −

p+
2 pR

1 , λ1 = −, λ2 = −

v̄(p2, λ2)γLv(p1, λ1) =
2√

p+
1 p+

2



p+
2 pL

1 , λ1 = +, λ2 = +

m(p+
2 − p+

1 ), λ1 = −, λ2 = +

0, λ1 = +, λ2 = −

p+
1 pL

2 , λ1 = −, λ2 = −

(A.25)
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A.3.3 spinor part in the pair creation/annihilation vertex

ū(p2, λ2)γ+v(p1, λ1) = 2
√

p+
1 p+

2 δλ2,−λ1

ū(p2, λ2)γ−v(p1, λ1) =
2√

p+
1 p+

2



−m(pL
2 + pL

1 ), λ1 = +, λ2 = +

−m2 + pR
1 pL

2 , λ1 = −, λ2 = +

−m2 + pL
1 pR

2 , λ1 = +, λ2 = −

m(pR
1 + pR

2 ), λ1 = −, λ2 = −

ū(p2, λ2)γRv(p1, λ1) =
2√

p+
1 p+

2



−m(p+
1 + p+

2 ), λ1 = +, λ2 = +

p+
2 pR

1 , λ1 = −, λ2 = +

p+
1 pR

2 , λ1 = +, λ2 = −

0, λ1 = −, λ2 = −

ū(p2, λ2)γLv(p1, λ1) =
2√

p+
1 p+

2



0, λ1 = +, λ2 = +

p+
1 pL

2 , λ1 = −, λ2 = +

p+
2 pL

1 , λ1 = +, λ2 = −

m(p+
2 + p+

1 ), λ1 = −, λ2 = −

(A.26)
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v̄(p2, λ2)γ+u(p1, λ1) = 2
√

p+
1 p+

2 δλ2,−λ1

v̄(p2, λ2)γ−u(p1, λ1) =
2√

p+
1 p+

2



−mq(pR
2 + pR

1 ), λ1 = +, λ2 = +

−m2
q + pR

2 pL
1 , λ1 = −, λ2 = +

−m2
q + pL

1 pR
2 , λ1 = +, λ2 = −

mq(pL
2 + pL

1 ), λ1 = −, λ2 = −

v̄(p2, λ2)γRu(p1, λ1) =
2√

p+
1 p+

2



0, λ1 = +, λ2 = +

pR
2 p+

1 , λ1 = −, λ2 = +

pR
1 p+

2 , λ1 = +, λ2 = −

mq(p+
2 + p+

1 ), λ1 = −, λ2 = −

v̄(p2, λ2)γLu(p1, λ1) =
2√

p+
1 p+

2



−mq(p+
2 + p+

1 ), λ1 = +, λ2 = +

pL
1 p+

2 , λ1 = −, λ2 = +

pL
2 p+

1 , λ1 = +, λ2 = −

0, λ1 = −, λ2 = −

(A.27)

A.3.4 spinor part in the instantaneous quark vertex

ū(p2, λ2)γxγ+γxu(p1, λ1) = ū(p2, λ2)γyγ+γyu(p1, λ1) = 2
√

p+
1 p+

2 δλ2,λ1

ū(p2, λ2)γxγ+γyu(p1, λ1) = −ū(p2, λ2)γyγ+γxu(p1, λ1) = 2i
√

p+
1 p+

2 δλ2,λ12λ1

(A.28)
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A.3.5 spinor part in the electroweak current

v̄(p2, λ2)γ+γ5u(p1, λ1) = 2
√

p+
1 p+

2



0, λ1 = +, λ2 = +

−1, λ1 = −, λ2 = +

1, λ1 = +, λ2 = −

0, λ1 = −, λ2 = −

v̄(p2, λ2)γ−γ5u(p1, λ1) =
2√

p+
1 p+

2



mq(pR
2 − pR

1 ), λ1 = +, λ2 = +

−m2
q − pR

2 pL
1 , λ1 = −, λ2 = +

m2
q + pL

2 pR
1 , λ1 = +, λ2 = −

mq(pL
2 − pL

1 ), λ1 = −, λ2 = −

v̄(p2, λ2)γRγ5u(p1, λ1) =
2√

p+
1 p+

2



0, λ1 = +, λ2 = +

−pR
2 p+

1 , λ1 = −, λ2 = +

pR
1 p+

2 , λ1 = +, λ2 = −

mq(p+
2 − p+

1 ), λ1 = −, λ2 = −

v̄(p2, λ2)γLγ5u(p1, λ1) =
2√

p+
1 p+

2



mq(p+
2 + p+

1 ), λ1 = +, λ2 = +

−pL
1 p+

2 , λ1 = −, λ2 = +

pL
2 p+

1 , λ1 = +, λ2 = −

0, λ1 = −, λ2 = −

(A.29)



www.manaraa.com

153

A.4 Spin vector of massive spin 1 particles

Define the spin vector for the massive spin 1 particles with momentum kµ and spin projection λ:

e(k, λ = 0) = (
k+

m
,
~k2
⊥ − m2

mk+
,
~k⊥
m

) (A.30)

e(k, λ = ±1) = (0,
2ε⊥λ · ~k⊥

k+
, ε⊥λ ) (A.31)

where ε⊥± = (1,±i)/
√

2 and m is the mass of the particle.

Spin vector identities

• Proca equation:

kµeµ(k, λ) = 0 .

• Orthogonality:

eµ(k, λ)e∗µ(k, λ′) = −δλ,λ′ ; .

• Crossing symmetry:

e∗µ(k, λ) = eµ(k,−λ), eµ(−k, λ) = (−1)λ+1eµ(k, λ)

A.5 Polarizations of massless vector bosons

Define the polarization vector for a massless vector boson with momentum kµ and spin projection λ =

±1:

ε
µ
λ (k) = (ε+

λ , ε
−
λ , ε

⊥
λ ) = (0, 2

ε⊥λ ·
~k⊥

k+
, ε⊥λ ) , (A.32)

where ε⊥± = (1,±i)/
√

2.

A.6 Discrete symmetries

Consider a particle state with momentum pµ and parity P,

� |φ(pµ,P)〉 = P |φ(Pµν pν,P)〉 . (A.33)
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The parity operator is

P
µ
ν = (P−1)

µ
ν =



+1

−1

−1

−1


. (A.34)

The current operator under the parity transformation is

�
−1Jµ� = P

µ
ν Jν . (A.35)

For spin vector,

eµ(P · k, λ) = −P
µ
νeν(k, λ) . (A.36)

Consider a particle state with charge conjugation C (if there is one),

� |φ(pµ,C)〉 = C |φ(pµ,C)〉 . (A.37)

The current operator under the charge conjugation is

�
−1Jµ� = −Jµ . (A.38)

A.7 QCD color space

The specification of the quark state in the color space is by a three-element column vector c,

c =


1

0

0

 for red,


0

1

0

 for blue,


0

0

1

 for green. (A.39)
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We use the standard basis for the fundamental representation of SU(3), i.e. the Gell-Mann matrices,

T 1 =
1
2


0 1 0

1 0 0

0 0 0

 , T 2 =
1
2


0 −i 0

i 0 0

0 0 0

 , T 3 =
1
2


1 0 0

0 −1 0

0 0 0

 ,

T 4 =
1
2


0 0 1

0 0 0

1 0 0

 , T 5 =
1
2


0 0 −i

0 0 0

i 0 0

 , T 6 =
1
2


0 0 0

0 0 1

0 1 0

 ,

T 7 =
1
2


0 0 0

0 0 −i

0 i 0

 , T 8 =
1

2
√

3


1 0 0

0 1 0

0 0 −2

 .

(A.40)

In the matrix notation, Aµ = T aAµa with the gluon index a = 1, . . . , 8. The color matrix element

Aµcc′ = T a
cc′A

µ
a

Aµ =
1
2



1
√

3
Aµ8 + Aµ3 Aµ1 − iAµ2 Aµ4 − iAµ5

Aµ1 + iAµ2
1
√

3
Aµ8 − Aµ3 Aµ6 − iAµ7

Aµ4 + iAµ5 Aµ6 + iAµ7 −
2
√

3
Aµ8


. (A.41)
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APPENDIX B. THE LIGHT-FRONT QCD HAMILTONIAN

In this Appendix, we first derive the canonical QCD Hamiltonian according to Ref. [33] with details,

which compensate the discussion in Section 1.3. We then turn to the derivation with the participation of an

additional background gluon field.

B.1 The light-front QCD Hamiltonian

The strong interaction between quarks and gluons is described by the non-Abelian gauge theory with

symmetry group SU(3), known as quantum chromodynamics (QCD). The QCD Lagrangian reads

L = −
1
4

Fµν
aFa

µν + Ψ(iγµDµ − m)Ψ . (B.1)

Aνa is color vector potential, with the gluon index a = 1, 2, . . . , 8. The quark field Ψα,c, carries the Dirac index

α = 1, 2, . . . , 4 and the color index c = 1, 2, 3, which are usually suppressed in expressions like ΨγµDµΨ =

Ψcγ
µ(Dµ)cc′Ψc′ . m = mI3 = mδcc′ is diagonal in color space. The vector potential can be parameterized

as (Aµ)cc′ = T a
cc′A

µ
a by the color matrices T a

cc′ , and its matrix form can be found in Appendix A.7. Fµν
a ≡

∂µAνa − ∂
νAµa − g f abcAµbAνc is the field tensor, and Dµ ≡ ∂µI3 + igAµ is the covariant derivative. The structure

constants f abc are complete anti-symmetric, f abc = f cab = − f acb. In the following derivations, We will drop

the identity operator in the color space, I3, for simplicity.

The QCD Lagrangian is a functional of the twelve components Aµ, Ψα, Ψα and their space-time deriva-

tives. We can denote them collectively as L = L[φr, ∂µφr]. The equations of motion are

∂κΠ
κ
r − δL/δφr = 0 , (B.2)

where the generalized momentum fields are Πκ
r ≡ δL/δ(∂κφr). The variational derivatives are

δL

δAs
κ

= −
1
4

Fκµ
a (−g f ascAc

µ) × 4 + Ψ(iγκ(igT s))Ψ = −g f sacFκµ
a Ac

µ − gΨγκT sΨ, Πλ
As
κ

= −Fλκ
s , (B.3)

δL

δΨ
= −gΨγµCµ − mΨ −

i
2

Ψγµ
←−
∂ µ, Πλ

Ψ =
i
2

Ψγλ, Πλ

Ψ
=

i
2
γλΨ . (B.4)
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The first four equations of motion give the color-Maxwell equations,

∂λFλκ
s = gJκs , (B.5)

with the current density Jκs ≡ f sacFκµ
a Ac

µ+ΨγκT sΨ. In the light-cone gauge of A+
a = 0, the κ = + component

of Eq. (B.5) does not contain time derivatives, and can be written as

gJ+
a = ∂λFλ+

a = −∂+∂−A−a − ∂
+∂iAi

a . (B.6)

By disregarding the zero modes [151], one inverts the equation to

1
2

A−a = −g
1

(∂+)2 J+
a −

1
∂+
∂iAi

a . (B.7)

We define the free solution Ãµa such that limg→0 Aµa = Ãµa. According to Eq. (B.7), the free field reads,

Ãµa = (0, Ã−a , A
i
a), with

1
2

Ã−a ≡
1
2

A−a + g
1

(∂+)2 J+
a = −

1
∂+
∂iAi

a . (B.8)

Ãµa is thereby purely transverse.

The second group of equation of motions give the adjoint color-Dirac equation,

Ψ[iγµ(
←−
∂ µ − igAµ) + m] = 0 . (B.9)

Take Hermitian conjugate on the equation and use the relation Ψ = Ψ†γ0, we have

[−iγµ†(∂µ + igAµ) + m]γ0Ψ = 0 . (B.10)

By moving γ0 to the left, we arrive at the color-Dirac equation,

[iγµ(∂µ + igAµ) − m]Ψ = 0 . (B.11)

Similar to the gluon field, we also want to separate the dynamical components of the fermion field. Define

the projected spinors Ψ± = Λ±Ψ, with Λ± = 1
2γ

0γ±, see more definitions of Λ± in Appendix A.2. First

multiply Eq. (B.42) by γ0 on the left,

[i(γ0γ+ D+ + γ0γ−D− + αi Di) − mβ]Ψ = 0 ,

which is, [i(2Λ+ D+ + 2Λ−D− + αi Di) − mβ]Ψ = 0 .
(B.12)
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Then multiply the equation by Λ+(Λ−) on the left, and bring it to the right,

[i(2D±Λ± + αi DiΛ
∓) − mβΛ∓]Ψ = 0 . (B.13)

One thereby obtains a coupled set of spinor equations,

2i∂+Ψ+ = (−iαi Di + mβ)Ψ− + 2gA+Ψ+ , (B.14)

2i∂−Ψ− = (−iαi Di + mβ)Ψ+ + 2gA−Ψ− . (B.15)

Eq. (B.46) does not contain time derivatives, and can be written as a constraint relation,

Ψ− =
1

2i∂−
(mβ − iαi Di)Ψ+ . (B.16)

By substituting Eq. (B.47) into Eq. (B.45), we get

2iD+Ψ+ = (mβ − iαi Di)
1

2i∂−
(mβ − iαi Di)Ψ+ . (B.17)

In analogy to the free solution Ã, we define the free spinor Ψ̃ = Ψ̃+ + Ψ̃− with

Ψ̃+ = Ψ+, Ψ̃− =
1

2i∂−
(mβ − iαi∂i)Ψ+ . (B.18)

It is also easy to see that Ψ̃± = Λ±Ψ̃.

We now turn to the construction of the canonical Hamiltonian density through a Legendre transforma-

tion,

P+ =(∂+As
κ)Π

+
As
κ

+ (∂+Ψ)Π+
Ψ + (∂+Ψ)Π+

Ψ
− L

= − F+κ
s ∂+As

κ +
i
2

[Ψγ+∂+Ψ + h.c.] +
1
4

Fµν
aFa

µν −
1
2

[Ψ(iγµDµ − m)Ψ + Ψ(−iγµ
←−
Dµ − m)Ψ]

= − F+κ
s ∂+As

κ +
i
2

[Ψγ+∂+Ψ + h.c.] +
1
4

Fµν
aFa

µν ,

(B.19)

where we have used the color-Dirac equations as in Eqs. (B.40) and (B.42) in the last line. It is convenient

to add a total derivative −∂κ(Fκ+
s As

+) to the Hamiltonian P− = 2P+,

P− =2
∫

dx+ d2x⊥ P+

=

∫
dx− d2x⊥ − F+κ

s ∂+As
κ +

i
2

[Ψγ+∂+Ψ + h.c.] +
1
4

Fµν
aFa

µν − ∂κ(F
κ+
s As

+) .
(B.20)



www.manaraa.com

159

We can rewrite the first and the last term into

Fκ+
s ∂+As

κ − ∂κ(F
κ+
s As

+) =Fκ+
s ∂+As

κ − (∂κFκ+
s )As

+ − Fκ+
s ∂κAs

+

=Fκ+
s (∂+As

κ − ∂κA
s
+) − (∂κFκ+

s )As
+

= − Fκ+
s (F s

κ+ + g f sbcAb
κAc

+) − gJ+
s As

+

= − Fκ+
s F s

κ+ − gFκ+
s f sbcAb

κAc
+ − gJ+

s As
+

= − Fκ+
s F s

κ+ − gFκ+
s f sbcAb

κAc
+ − g( f sacF+µ

a Ac
µ + Ψγ+T sΨ)As

+

= − Fκ+
s F s

κ+ − gΨγ+T sAs
+Ψ .

(B.21)

The Hamiltonian becomes

P− =

∫
dx− d2x⊥

1
4

Fµν
aFa

µν − Fκ+
s F s

κ+ − gΨγ+T sAs
+Ψ +

i
2

[Ψγ+∂+Ψ + h.c.]

=

∫
dx− d2x⊥

1
4

Fµν
aFa

µν − Fκ+
s F s

κ+ +
i
2

[Ψγ+ D+Ψ + h.c.] .
(B.22)

Let us also rewrite the color-electro-magnetic energy density and separate the longitudinal and the transver-

sal contributions,

1
4

Fµν
a Fa

µν − Fµ+
a Fa

µ+ =
1
4

(Fi j
a Fa

i j + Fµ+
a Fa

µ+ + F+ν
a Fa

+ν + Fµ−
a Fa

µ− + F−νa Fa
−ν

− F+−
a F+− − F−+

a F−+) − Fµ+
a Fµ+

=
1
4

Fi j
a Fa

i j +
1
2

(Fµ+
a Fa

µ+ + Fµ−
a Fa

µ− − F+−
a Fa

+−) − Fµ+
a Fa

µ+

=
1
4

Fi j
a Fa

i j −
1
2

F+−
a Fa

+− .

(B.23)

Note that Fµ+
a Fa

µ+ = Fµ−
a Fa

µ− by Fµ−
a = Fa

ν+gµνg+−. Substituting A−a by Eq. (B.7), the color-electric part

becomes,

F+−
a Fa

+− = − ∂+A−a∂−Aa
+

= −
1
4
∂+A−a∂

+A−a

= − (−g
1
∂+

J+
a − ∂iAi

a)2

= − g2 1
∂+

J+
a

1
∂+

J+
a − (∂iAi

a)
2
− 2g

1
∂+

J+
a ∂iAi

a

=g2J+
a

1

(∂+)2 J+
a − (∂iAi

a)
2
− gJ+

a Ã−a .

(B.24)
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In deriving the last line, we introduced an extra term −g2 1
∂+ (J+

a
1
∂+ J+

a ), and it should vanish under the integral

of
∫

dx− in the Hamiltonian. The color-magnetic part can be written as

Fi j
a Fa

i j =2∂iA j
a∂iAa

j − 2∂iA j
a∂ jAa

i − 4g f abc∂iA j
aAb

i Ac
j + g2 f abcAi

bA j
c f ae f Ae

i A f
j

= − 2A j
a∂

i∂iAa
j + 2A j

a∂
i∂ jAa

i − 4g f abc∂iA j
aAb

i Ac
j + g2 f abcAi

bA j
c f ae f Ae

i A f
j

=2A j
a∇

2
⊥Aa

j − 2(∂ jA
j
a∂

iAa
i ) − 4g f abc∂iA j

aAb
i Ac

j + g2 f abcAi
bA j

c f ae f Ae
i A f

j .

(B.25)

For the spinor terms,

iΨγ+ D+Ψ = iΨ†γ0γ+ D+Ψ = 2iΨ†Λ+ D+Ψ = 2iΨ†Λ+ D+Λ+Ψ = 2iΨ†+ D+Ψ+ . (B.26)

Substitution of the time derivative in Eq. (B.48) and the free spinors defined in Eq. (B.49) leads to

2iΨ†+ D+Ψ+

=Ψ
†
+(mβ − iαi Di)

1
2i∂−

(mβ − iαi Di)Ψ+

=Ψ
†
+(mβ − iαi∂i)

1
2i∂−

(mβ − iαi∂i)Ψ+ + g2Ψ
†
+α

i Ai
1

2i∂−
αi AiΨ+

+ gΨ
†
+α

i Ai
1

2i∂−
(mβ − iαi∂i)Ψ+ + gΨ

†
+(mβ − iαi∂i)

1
2i∂−

αi AiΨ+

=Ψ
†
+(mβ − iαi∂i)

1
2i∂−

(mβ − iαi∂i)Ψ+ + g2Ψ
†
+α

i Ai
1

2i∂−
αi AiΨ+ + gΨ

†
+α

i AiΨ̃− + gΨ̃
†
−α

i AiΨ+

=Ψ̃
†
+(mβ − iαi∂i)

1
2i∂−

(mβ − iαi∂i)Ψ̃+ + g2Ψ̃
†
+α

i Ai
1

2i∂−
αi AiΨ̃+ + gΨ̃

†
+α

i AiΨ̃− + gΨ̃
†
−α

i AiΨ̃+ .

(B.27)

The first term reads,

Ψ̃
†
+(mβ − iαi∂i)

1
2i∂−

(mβ − iα j∂ j)Ψ̃+ =Ψ̃†Λ+(mβ − iαi∂i)
1

2i∂−
(mβ − iα j∂ j)Λ+Ψ̃

=Ψ̃†Λ+(mβ − iαi∂i)
1

2i∂−
Λ−(mβ − iα j∂ j)Ψ̃

=Ψ̃†Λ+Λ+(mβ − iαi∂i)
1

2i∂−
(mβ − iα j∂ j)Ψ̃

=Ψ̃†
1
2
γ0γ+(mβ − iαi∂i)

1
2i∂−

(mβ − iα j∂ j)Ψ̃

=
1
2

¯̃Ψγ+(mβ − iαi∂i)
1

2i∂−
(mβ − iα j∂ j)Ψ̃

=
1
2

¯̃Ψγ+(m + iγi∂i)
(γ0)2

2i∂−
(m − iγ j∂ j)Ψ̃

=
1
2

¯̃Ψγ+ m2 − ∇2
⊥

2i∂−
Ψ̃ .

(B.28)
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The second term reads,

g2Ψ̃
†
+α

i Ai
1

2i∂−
α j A jΨ̃+ =

g2

2
¯̃Ψγ+γ0γi Ai

1
2i∂−

γ0γ j A jΨ̃ =
g2

2
¯̃Ψγi Ai

γ+

2i∂−
γ j A jΨ̃ . (B.29)

The last two terms combine into

gΨ̃
†
+α

i AiΨ̃− + gΨ̃
†
−α

i AiΨ̃+ = g(Ψ̃†+ + Ψ̃−)αi Ai(Ψ̃
†
+ + Ψ̃−) = gΨ̃†αi AiΨ̃ = g ¯̃Ψγi AiΨ̃ . (B.30)

We can also define the current density of free fields solution J̃µa in analogy to Jµa , and notice that their ”+”

components are the same,

J+
s = f sacF+µ

a Ac
µ + Ψγ+T sΨ = f sac∂+AµaAc

µ + Ψγ+T sΨ

= f sac∂+Ai
aAc

i + Ψγ+T sΨ = f sac∂+Ãi
aÃc

i + ¯̃Ψγ+T sΨ̃ = J̃+
s .

(B.31)

Let us also introduce the fermion current ̃µa ≡ ¯̃ΨγµT aΨ̃ as part of the total current J̃µa . By substituting

Eqs. (B.23) to (B.31) into Eq. (B.22), and with Ãi = Ai, we finally get the front form Hamiltonian,

P−QCD =

∫
dx− d2x⊥ −

1
2

Ã j
a(i∇⊥)2Ãa

j +
1
2

¯̃Ψγ+ m2 − ∇2
⊥

i∂+
Ψ̃

− g f abc∂iÃ j
aÃb

i Ãc
j + gJ̃+

a Ãa
+ + g ¯̃Ψγi ÃiΨ̃

−
1
2

g2 J̃+
a

1

(∂+)2 J̃+
a +

g2

4
f abcÃi

bÃ j
c f ae f Ãe

i Ã f
j

+
g2

2
¯̃Ψγi Ãi

γ+

i∂+
γ j Ã jΨ̃ .

(B.32)

The two terms in the first line are the kinetic energy for the gauge field and the fermion respectively. The

three terms in the second line can be written collectively as gJ̃µa Ãa
µ, which include the three-gluon-interaction,

the gluon emission and quark-antiquark-pair-production processes. The two terms in the third line are

the instantaneous-gluon-interaction and the four-gluon-interaction respectively. The last line contains the

instantaneous-fermion-interaction. Note that in Eq. (1.9) of Section 1.3, we dropped the tilde on all variables

to have a cleaner notation.

B.2 The light-front QCD Hamiltonian with a background field

In the presence of the background field Aµ, one should replace the gauge field Aµ by Aµ +Aµ in the

Lagrangian. By doing so, we take into account the kinetic term for the background and its interaction with
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the gluon field. The Lagrangian density for QCD with the background field Aµ can be written explicitly as

below,

L = −
1
4

Fµν
aFa

µν +
1
2

[Ψ(iγµ(∂µ + igCµ) − m)Ψ + Ψ(−iγµ(
←−
∂ µ − igCµ) − m)Ψ] , (B.33)

where Fµν
a ≡ ∂

µCν
a − ∂

νCµ
a − g f abcCµ

bCν
c and Cµ = Aµ +Aµ. The variational derivatives are now

δL

δAs
κ

= −
1
4

Fκµ
a (−g f ascCc

µ) × 4 + Ψ(iγκ(igT s))Ψ = −g f sacFκµ
a Cc

µ − gΨγκT sΨ , Πλ
As
κ

= −Fλκ
s , (B.34)

δL

δΨ
= −gΨγµCµ − mΨ −

i
2

Ψγµ
←−
∂ µ, Πλ

Ψ =
i
2

Ψγλ, Πλ

Ψ
=

i
2
γλΨ . (B.35)

The first four equations of motion give the color-Maxwell equations,

∂λFλκ
s = gJκs , (B.36)

with the current density Jκs ≡ f sacFκµ
a Cc

µ + ΨγκT sΨ. In the light-cone gauge of A+
a = A+

a = 0, the κ = +

component of Eq. (B.36) does not contain time derivatives, and can be written as

gJ+
a = ∂λFλ+

a = −∂+∂−C−a − ∂
+∂iCi

a . (B.37)

By disregarding the zero modes [151], one inverts the equation to

1
2

A−a = −g
1

(∂+)2 J+
a −

1
∂+
∂iCi

a −
1
2
A−a . (B.38)

We define the free solution Ãµa such that limg→0 Aµa = Ãµa. According to Eq. (B.38), the free field reads,

Ãµa = (0, Ã−a , A
i
a), with

1
2

Ã−a ≡
1
2

A−a + g
1

(∂+)2 J+
a = −

1
∂+
∂iCi

a −
1
2
A−a . (B.39)

Ãµa is thereby purely transverse.

The second group of equation of motions give the adjoint color-Dirac equation,

Ψ[iγµ(
←−
∂ µ − igCµ) + m] = 0 . (B.40)

Take Hermitian conjugate on the equation and use the relation Ψ = Ψ†γ0, we have

[−iγµ†(∂µ + igCµ) + m]γ0Ψ = 0 . (B.41)
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By moving γ0 to the left, we arrive at the color-Dirac equation,

[iγµ(∂µ + igCµ) − m]Ψ = 0 . (B.42)

We now separate the dynamical component of the fermion field. First multiply Eq. (B.42) by γ0 on the left,

[i(γ0γ+ D+ + γ0γ−D− + αi Di) − mβ]Ψ = 0 ,

which is, [i(2Λ+ D+ + 2Λ−D− + αi Di) − mβ]Ψ = 0 .
(B.43)

Then multiply the equation by Λ+(Λ−) on the left, and bring it to the right,

[i(2D±Λ± + αi DiΛ
∓) − mβΛ∓]Ψ = 0 . (B.44)

One thereby obtains a coupled set of spinor equations,

2i∂+Ψ+ = (−iαi Di + mβ)Ψ− + 2gC+Ψ+ , (B.45)

2i∂−Ψ− = (−iαi Di + mβ)Ψ+ + 2gC−Ψ− . (B.46)

Eq. (B.46) does not contain time derivatives, and can be written as a constraint relation,

Ψ− =
1

2i∂−
(mβ − iαi Di)Ψ+ . (B.47)

Note that we already have the background field in light-cone gauge, i.e. A+
a = 0. By substituting Eq. (B.47)

into Eq. (B.45), we get

2iD+Ψ+ = (mβ − iαi Di)
1

2i∂−
(mβ − iαi Di)Ψ+ . (B.48)

In analogy to the free solution Ã, we define the free spinor Ψ̃ = Ψ̃+ + Ψ̃− with

Ψ̃+ = Ψ+, Ψ̃− =
1

2i∂−
(mβ − iαi∂i)Ψ+ . (B.49)

It is also easy to see that Ψ̃± = Λ±Ψ̃.

One can then construct the Hamiltonian density through a Legendre transformation, as in Eq. (B.19).

P+ = −F+κ
s ∂+As

κ +
i
2

[Ψγ+∂+Ψ + h.c.] +
1
4

Fµν
aFa

µν . (B.50)
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The difference is that the field tensor, Fµν, now also contains the background field. It is then convenient to

add a total derivative −∂κ(Fκ+
s Cs

+) to the Hamiltonian,

P− =2
∫

dx+ d2x⊥ P+

=

∫
dx− d2x⊥ − F+κ

s ∂+As
κ +

i
2

[Ψγ+∂+Ψ + h.c.] +
1
4

Fµν
aFa

µν − ∂κ(F
κ+
s Cs

+) .
(B.51)

We can rewrite the first and the last term into

Fκ+
s ∂+As

κ − ∂κ(F
κ+
s Cs

+)

=Fκ+
s ∂+As

κ − (∂κFκ+
s )Cs

+ − Fκ+
s ∂κCs

+

=Fκ+
s (∂+As

κ − ∂κC
s
+) − (∂κFκ+

s )Cs
+

= − Fκ+
s (F s

κ+ + g f sbcCb
κC

c
+ + ∂+A

s
κ) − gJ+

s Cs
+

= − Fκ+
s F s

κ+ − gFκ+
s f sbcCb

κC
c
+ − Fκ+

s ∂+A
s
κ − gJ+

s Cs
+

= − Fκ+
s F s

κ+ − gFκ+
s f sbcCb

κC
c
+ − Fκ+

s ∂+A
s
κ − g( f sacF+µ

a Cc
µ + Ψγ+T sΨ)Cs

+

= − Fκ+
s F s

κ+ − gΨγ+T sCs
+Ψ − Fκ+

s ∂+A
s
κ .

(B.52)

The last term −Fκ+
s ∂+A

s
κ = ∂+Ci

s∂+A
s
i should cancel under the integral

∫
dx− if both fields Ai

s and Ai
s

vanish on the boundaries of x− → ±∞. The Hamiltonian then becomes

P− =

∫
dx− d2x⊥

1
4

Fµν
aFa

µν − Fκ+
s F s

κ+ − gΨγ+T sCs
+Ψ +

i
2

[Ψγ+∂+Ψ + h.c.]

=

∫
dx− d2x⊥

1
4

Fµν
aFa

µν − Fκ+
s F s

κ+ +
i
2

[Ψγ+ D+Ψ + h.c.] .
(B.53)

The color-electro-magnetic energy density could be written as 1
4 Fµν

a Fa
µν − Fµ+

a Fa
µ+ = 1

4 Fi j
a Fa

i j −
1
2 F+−

a Fa
+−

according to Eq. (B.23). Substituting A−a by Eq. (B.38), the color-electric part becomes,

F+−
a Fa

+− = − ∂+C−a ∂−C
a
+

= −
1
4
∂+C−a ∂

+C−a

= − (−g
1
∂+

J+
a − ∂iCi

a)2

= − g2 1
∂+

J+
a

1
∂+

J+
a − (∂iCi

a)
2
− 2g

1
∂+

J+
a ∂iCi

a

=g2J+
a

1

(∂+)2 J+
a − (∂iCi

a)
2
− gJ+

a Ã−a − gJ+
aA

−
a .

(B.54)



www.manaraa.com

165

Note that in deriving the last line, we introduced an extra term −g2 1
∂+ (J+

a
1
∂+ J+

a ), and it should vanish under

the integral of
∫

dx− in the Hamiltonian. Similar to Eq. (B.25), the color-magnetic part can be written as

Fi j
a Fa

i j =2C j
a∇

2
⊥Ca

j − 2(∂ jC
j
a∂

iCa
i ) − 4g f abc∂iC j

aCb
i Cc

j + g2 f abcCi
bC j

c f ae f Ce
i C f

j .
(B.55)

For the spinor terms, we have

gΨγ+T sAs
+Ψ = 2gΨ

†
+T sAs

+Ψ+ = 2gΨ̃
†
+A+Ψ̃+ = g ¯̃Ψγ+

A+Ψ̃ , (B.56)

and

iΨγ+ D+Ψ = iΨ†γ0γ+ D+Ψ = 2iΨ†Λ+ D+Ψ = 2iΨ†Λ+ D+Λ+Ψ = 2iΨ†+ D+Ψ+ . (B.57)

Substitution of the time derivative in Eq. (B.48) and the free spinors defined in Eq. (B.49) leads to

2iΨ†+ D+Ψ+

=Ψ
†
+(mβ − iαi Di)

1
2i∂−

(mβ − iαi Di)Ψ+

=Ψ
†
+(mβ − iαi∂i)

1
2i∂−

(mβ − iαi∂i)Ψ+ + g2Ψ
†
+α

iCi
1

2i∂−
αiCiΨ+

+ gΨ
†
+α

iCi
1

2i∂−
(mβ − iαi∂i)Ψ+ + gΨ

†
+(mβ − iαi∂i)

1
2i∂−

αiCiΨ+

=Ψ
†
+(mβ − iαi∂i)

1
2i∂−

(mβ − iαi∂i)Ψ+ + g2Ψ
†
+α

iCi
1

2i∂−
αiCiΨ+ + gΨ

†
+α

iCiΨ̃− + gΨ̃
†
−α

iCiΨ+

=Ψ̃
†
+(mβ − iαi∂i)

1
2i∂−

(mβ − iαi∂i)Ψ̃+ + g2Ψ̃
†
+α

iCi
1

2i∂−
αiCiΨ̃+ + gΨ̃

†
+α

iCiΨ̃− + gΨ̃
†
−α

iCiΨ̃+ .

(B.58)

The first term reads,

Ψ̃
†
+(mβ − iαi∂i)

1
2i∂−

(mβ − iα j∂ j)Ψ̃+ =Ψ̃†Λ+(mβ − iαi∂i)
1

2i∂−
(mβ − iα j∂ j)Λ+Ψ̃

=Ψ̃†Λ+(mβ − iαi∂i)
1

2i∂−
Λ−(mβ − iα j∂ j)Ψ̃

=Ψ̃†Λ+Λ+(mβ − iαi∂i)
1

2i∂−
(mβ − iα j∂ j)Ψ̃

=Ψ̃†
1
2
γ0γ+(mβ − iαi∂i)

1
2i∂−

(mβ − iα j∂ j)Ψ̃

=
1
2

¯̃Ψγ+(mβ − iαi∂i)
1

2i∂−
(mβ − iα j∂ j)Ψ̃

=
1
2

¯̃Ψγ+(m + iγi∂i)
(γ0)2

2i∂−
(m − iγ j∂ j)Ψ̃

=
1
2

¯̃Ψγ+ m2 − ∇2
⊥

2i∂−
Ψ̃ .

(B.59)
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The second term reads,

g2Ψ̃
†
+α

iCi
1

2i∂−
α jC jΨ̃+ =

g2

2
¯̃Ψγ+γ0γiCi

1
2i∂−

γ0γ jC jΨ̃ =
g2

2
¯̃ΨγiCi

γ+

2i∂−
γ jC jΨ̃ . (B.60)

The last two terms combine into

gΨ̃
†
+α

iCiΨ̃− + gΨ̃
†
−α

iCiΨ̃+ = g(Ψ̃†+ + Ψ̃−)αiCi(Ψ̃
†
+ + Ψ̃−) = gΨ̃†αiCiΨ̃ = g ¯̃ΨγiCiΨ̃ . (B.61)

Define the current density of free fields solution J̃µa in analogy to Jµa , and notice that their ”+” components

are the same,

J+
s = f sacF+µ

a Ac
µ + Ψγ+T sΨ = f sac∂+AµaAc

µ + Ψγ+T sΨ

= f sac∂+Ai
aAc

i + Ψγ+T sΨ = f sac∂+Ãi
aÃc

i + ¯̃Ψγ+T sΨ̃ = J̃+
s .

(B.62)

Define the current density of free fields solution J̃µa in analogy to Jµa , and notice that their ”+” components

are the same,

J+
s = f sacF+µ

a Cc
µ + Ψγ+T sΨ = f sac∂+Ci

aCc
i + ¯̃Ψγ+T sΨ̃ = J̃+

s . (B.63)

By substituting the above equations into Eq. (B.53), we finally get the front form Hamiltonian with the

background field,

P− =

∫
dx− d2x⊥ −

1
2

C j
a(i∇)2

⊥Ca
j +

1
2

¯̃Ψγ+ m2 − ∇2
⊥

2i∂−
Ψ̃

− g f abc∂iC j
aCb

i Cc
j + gJ̃+

a Ãa
+ + gJ̃+

aA
a
+ + g ¯̃ΨγiCiΨ̃

−
1
2

g2 J̃+
a

1

(∂+)2 J̃+
a +

g2

4
f abcCi

bC j
c f ae f Ce

i C f
j

+
g2

2
¯̃ΨγiCi

γ+

2i∂−
γ jC jΨ̃ .

(B.64)

The two terms in the first line are the kinetic energy for the gauge field, the background field and the

fermion. The four terms in the second line can be written collectively as gJ̃µaCa
µ, which include the three-

gluon-interaction, the gluon emission and quark-antiquark-pair-production processes. The two terms in the

third line are the instantaneous-gluon-interaction and the four-gluon-interaction respectively. The last line

contains the instantaneous-fermion-interaction. For each interaction involving the gluon field, it also in-

volves the background field. In studying the evolution of a QCD system interacting with a background field,
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one usually neglect the kinetic energy of the background field. It is often convenient to do the calculation in

the interaction picture, where we split the Hamiltonian into two parts, the full light-front QCD Hamiltonian

P−QCD as in Eq. (B.32) and the interaction terms introduced by the background field Vint = P− − P−QCD.
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APPENDIX C. THE BASIS FUNCTION REPRESENTATION

In Chapter 2, we adopt the light-front wavefunctions of the heavy quarkonia obtained in the BLFQ

approach by Ref. [3] to calculate various observables. The wavefunctions are solved in a basis representation

as in Eq. (C.1).

ψ
(m j)
σ1,σ2/h

(~k⊥, x) =
∑
n,m,l

ψh(n,m, l, σ1, σ2,m j)φnm(~k⊥/
√

x(1 − x))χl(x) . (C.1)

The transverse 2D harmonic oscillator (HO) function φnm is defined as

φnm(~k⊥; κ) = κ−1

√
4πn!

(n + |m|)!

(k⊥

κ

)|m|
exp(−(k⊥)2

/(2κ2))L|m|n ((k⊥)2
/κ2) exp(imθ) , (C.2)

where k⊥ = |~k⊥| and θ = arg k⊥. κ is the harmonic oscillator basis parameter in mass dimension. The

orthonormality relation is ∫
d2~k⊥
(2π)2φ

∗
n′m′(~k⊥)φnm(~k⊥) = δnn′δmm′ . (C.3)

kR = kx + iky (kL = kx − iky) is the complex representation of ~k⊥(~k∗⊥). The recurrence relations are

kRφn,m(~k⊥) = κ


√

n + |m| + 1φn,m+1(~k⊥) − θ(n − 1)
√

nφn−1,m+1(~k⊥) if m ≥ 0

√
n + |m|φn,m+1(~k⊥) −

√
n + 1φn+1,m+1(~k⊥) if m < 0

(C.4)

kLφn,m(~k⊥) = κ


√

n + |m|φn,m−1(~k⊥) −
√

n + 1φn+1,m−1(~k⊥) if m > 0

√
n + |m| + 1φn,m−1(~k⊥) − θ(n − 1)

√
nφn−1,m−1(~k⊥) if m ≤ 0

(C.5)

The Talmi-Moshinsky (TM) transformation [152] reads:

φn1m1(~p1; b1)φn2m2(~p2; b2) =
∑

NMnm

MNMnm
n1m1n2−m2

(b2/b1)φNM(~P; B)φnm(~p; b) , (C.6)

where

~P = ~p1 + ~p2, ~p =
b2

2

b2
1 + b2

2

~p1 −
b2

1

b2
1 + b2

2

~p2 ,
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and

B =

√
b2

1 + b2
2, b =

b1b2√
b2

1 + b2
2

.

The longitudinal basis function is

χl(x) =
√

4π(2l + α + β + 1)

√
Γ(l + 1)Γ(l + α + β + 1)
Γ(l + α + 1)Γ(l + β + 1)

xβ/2(1 − x)α/2P(α,β)
l (2x − 1) , (C.7)

where P(α,β)
l is the Jacobi polynomial. Its orthonormality relation is

1
4π

∫ 1

0
dxχl(x)χl′(x) = δll′ . (C.8)

The hadron matrix element requires the evaluation of the convolution of two meson wavefunctions. The

integrand of two meson wavefunctions reads as the following in the basis representation:

ψ
(m j)
ss̄/h(~k⊥, x)ψ

(m′j)∗
s′ s̄′/h′(~k

′
⊥, x

′) =
∑

n1,m1,l1

ψh(n1,m1, l1, s, s̄,m j)φn1m1(~k⊥/
√

x(1 − x))χl1(x)

×
∑

n2,m2,l2

ψ∗h′(n2,m2, l2, s′, s̄′,m′j)φn2m2(−~k′⊥/
√

x′(1 − x′))χl2(x′) .
(C.9)

The integration in the transverse and longitudinal dimensions makes up the convolution. It is usually ad-

vantageous to carry out the transverse integral first since it can be performed analytically by applying the

Talmi-Moshinsky transformation in Eq. (C.6). The remaining longitudinal integral could be performed nu-

merically through Gaussian quadrature.

C.1 The transverse integral

For convenience, we define a generalized form of the transverse integral as Π(t, x, z, ~∆⊥). Note that in

general, some order (notated as t) of kR (or kL) could appear in the integrand. To simplify the expression,

we also define x1 ≡ x′(1 − x′), x2 ≡ x(1 − x) and ~k′⊥ = ~k⊥ + ~l⊥ (~l⊥ ≡ (1 − x)~∆⊥). The integral can be

carried out by separating the overlapping momentum ~k⊥ and the transferred momentum ~l⊥. One can achieve

such separation through a Talmi-Moshinsky transformation, and before that, one should operate a change of
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variables.

Π(t, x, z, ~∆⊥) ≡
∫

d2~k⊥
(2π)2 (kR)tφn1m1(~k⊥/

√
x2)φn2m2(−(~k⊥ + ~l⊥)/

√
x1)

=

(√ x1x2

x1 + x2

)t+2 ∫
d2~k⊥
(2π)2 (kR)tφn1m1(

√
x1

x1 + x2
~k⊥)φn2m2(−

√
x2

x1 + x2
~k⊥ −

1
√

x1
~l⊥)

=

(√ x1x2

x1 + x2

)t+2 ∫
d2~k⊥
(2π)2 (kR −

√
x2

x1(x1 + x2)
lR)t

× φn1m1(
√

x1

x1 + x2
~k⊥ −

√
x2

x1 + x2
~l⊥)φn2m2(−

√
x2

x1 + x2
~k⊥ −

√
x1

x1 + x2
~l⊥)

=

(√ x1x2

x1 + x2

)t+2 ∫
d2~k⊥
(2π)2

t∑
s=0

(
t
s

)
(kR)s(−

√
x2

x1(x1 + x2)
lR)t−s

× φn1m1(
√

x1

x1 + x2
~k⊥ −

√
x2

x1 + x2
~l⊥︸                           ︷︷                           ︸

≡ ~p1

)φn2m2(−
√

x2

x1 + x2
~k⊥ −

√
x1

x1 + x2
~l⊥︸                             ︷︷                             ︸

≡ ~p2

) .

(C.10)

Note that I did not write out the scale parameter κ explicitly in the harmonic oscillators. In the electromag-

netic process, the initial and final hadrons have the same κ. However, in the electroweak decay, the initial

and final hadrons could have different κ’s. In the derivation below, let us first take the latter case, which is

more general, and then reduce the result to the former.

φn1m1(~p1; κ1)φn2m2(~p2; κ2) =
√

x1x2φn1m1(
√

x2~p1;
√

x2κ1)φn2m2(
√

x1~p2;
√

x1κ2) (C.11)

Applying the TM transformation,

φn1m1(
√

x2~p1;
√

x2κ1)φn2m2(
√

x1~p2;
√

x1κ2) =
∑

NMnm

MNMnm
n1m1n2m2

(
√

x1κ2/
√

x2κ1)φNM(~P; B)φnm(~p; b) ,

(C.12)

where

~P =
√

x2~p1 +
√

x1~p2 = −~l⊥, B =

√
x2κ

2
1 + x1κ

2
2 ,

and

~p =
x1κ

2
2

x2κ
2
1 + x1κ

2
2

√
x2~p1−

x2κ
2
1

x2κ
2
1 + x1κ

2
2

√
x1~p2 =

√
x1x2

x1 + x2
~k⊥+

x1x2(κ2
1 − κ

2
2)

(x1 + x2)(x2κ
2
1 + x1κ

2
2)
~l⊥, b =

√
x1x2κ1κ2√

x2κ
2
1 + x1κ

2
2

.
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In the case where κ1 = κ2 = κ, one can consider rewriting the two harmonic oscillators after the transforma-

tion on the same mass scale. This would be beneficial to the calculations in practice, where one only needs

to define the harmonic oscillator functions with one value of κ.

φNM(~P; B)φnm(~p; b) =φNM(−~l⊥;
√

x2 + x1κ)φnm(
√

x1x2

x1 + x2
~k⊥;

√
x1x2

x1 + x2
κ)

=φNM(−
~l⊥

√
x2 + x1

; κ)
1

√
x2 + x1

φnm(~k⊥; κ)
√

x1 + x2

x1x2

(C.13)

Back to Eqs. (C.11) and (C.12), we have

φn1m1(~p1; κ)φn2m2(~p2; κ) =
∑

NMnm

MNMnm
n1m1n2m2

(
√

x1/
√

x2)φNM(−
~l⊥

√
x2 + x1

; κ)φnm(~k⊥; κ) . (C.14)

Now we have successfully separated the overlapping momentum ~k⊥ and the transferred momentum ~l⊥,

Π(t, x, z, ~∆⊥) =

(√ x1x2

x1 + x2

)t+2 ∫
d2~k⊥
(2π)2

t∑
s=0

(
t
s

)
(kR)s(−

√
x2

x1(x1 + x2)
lR)t−s

∑
NMnm

MNMnm
n1m1n2m2

(
√

x1/
√

x2)

× φNM(−
~l⊥

√
x2 + x1

)φnm(~k⊥) .

(C.15)

The integral over one 2D-HO function could be carried out directly,∫
d2~k⊥
(2π)2 (kR)

s
φnm(~k⊥) = (−1)n2sκs+1

√
(n + s)!
πn!

δm+s,0 . (C.16)

Π(t, x, z, ~∆⊥) =

(√ x1x2

x1 + x2

)t+2 t∑
s=0

(
t
s

)
(−

√
x2

x1(x1 + x2)
lR)t−s

∑
Nnm

MNMn−s
n1m1n2m2

(
√

x1/
√

x2)

× φNM(−
1

√
x1 + x2

~l⊥)(−1)n2sκs+1

√
(n + s)!
πn!

.

(C.17)

In most cases of the hadron matrix elements, t = 0, 1,

Π(0, x, z, ~∆⊥) =
x1x2

x1 + x2

∑
Nnm

MNMn0
n1m1n2m2

(x1, x2)φNM(−
1

√
x1 + x2

~l⊥)(−1)n κ
√
π
. (C.18)

Π(1, x, z, ~∆⊥) = −
x2

x1 + x2
lRΠ(0, x, z,~l⊥)

+

(√ x1x2

x1 + x2

)3 ∑
Nnm

MNMn−1
n1m1n2m2

(x1, x2)φNM(−
1

√
x1 + x2

~l⊥)(−1)nκ2

√
(n + 1)
π

.

(C.19)
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Alternatively, one could perform the TM transformation by letting ~p⊥ carrying the transferred momen-

tum. Starting from Eq. (C.10),

Π(t, x, z, ~∆⊥) ≡
∫

d2~k⊥
(2π)2 (kR)tφn1m1(~k⊥/

√
x2)φn2−m2((~k⊥ + ~l⊥)/

√
x1)

=

(√ x1x2

x1 + x2

)t+2 ∫
d2~k⊥
(2π)2

t∑
s=0

(
t
s

)
(kR)s(−

√
x2

x1(x1 + x2)
lR)t−s

× φn1m1(
√

x1

x1 + x2
~k⊥ −

√
x2

x1 + x2
~l⊥︸                           ︷︷                           ︸

≡ ~p1

)φn2−m2(
√

x2

x1 + x2
~k⊥ +

√
x1

x1 + x2
~l⊥︸                           ︷︷                           ︸

≡ ~p2

) .

(C.20)

As in the previous derivation, I restore the κ’s in the 2D-HOs for generality.

φn1m1(~p1; κ1)φn2−m2(~p2; κ2) =
√

x1x2φn1m1(
κ2

κ1

√
x1~p1;

√
x1κ2)φn2−m2(

κ1

κ2

√
x2~p2;

√
x2κ1) (C.21)

Applying the TM transformation,

φn1m1(
κ2

κ1

√
x1~p1;

√
x1κ2)φn2−m2(

κ1

κ2

√
x2~p2;

√
x2κ1) =

∑
NMnm

MNMnm
n1m1n2−m2

(
√

x2κ1/
√

x1κ2) φNM(~P; B)φnm(~p; b) ,

(C.22)

where

~P =
κ2

κ1

√
x1~p1 +

κ1

κ2

√
x2~p2 =

κ2
2 x1 + κ2

1 x2

κ1κ2
√

x1 + x2

~k⊥ +
(κ2

2 − κ
2
1)
√

x1x2

κ1κ2(x1 + x2)
~l⊥, B =

√
x1κ

2
2 + x2κ

2
1 ,

and

~p =
x2κ

2
1

x1κ
2
2 + x2κ

2
1

κ2

κ1

√
x1~p1 −

x1κ
2
2

x1κ
2
2 + x2κ

2
1

κ1

κ2

√
x2~p2 = −

κ1κ2
√

x1x2

x1κ
2
2 + x2κ

2
1

~l⊥, b =

√
x1x2κ1κ2√

x1κ
2
2 + x2κ

2
1

.

In the case where κ1 = κ2 = κ, let us rewrite the two harmonic oscillators after the transformation on the

same mass scale.

φNM(~P; B)φnm(~p; b) =φNM(
√

x1 + x2~k⊥;
√

x1 + x2κ)φnm(−
√

x1x2

x1 + x2
~l⊥;

√
x1x2

x1 + x2
κ)

=φNM(~k⊥; κ)
1

√
x1 + x2

φnm(−
1

√
x1 + x2

~l⊥; κ)
√

x1 + x2

x1x2

(C.23)

Back to Eqs. (C.21) and (C.22),

φn1m1(~p1; κ)φn2−m2(~p2; κ) =
∑

NMnm

MNMnm
n1m1n2−m2

(
√

x2/
√

x1)φNM(~k⊥; κ)φnm(−
1

√
x1 + x2

~l⊥; κ) . (C.24)
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Again, we have successfully separated the overlapping momentum ~k⊥ and the transferred momentum ~l⊥,

Π(t, x, z, ~∆⊥) =

(√ x1x2

x1 + x2

)t+2 ∫
d2~k⊥
(2π)2

t∑
s=0

(
t
s

)
(~k⊥)s(−

√
x2

x1(x1 + x2)
~l⊥)t−s

∑
NMnm

MNMnm
n1m1n2−m2

(
√

x2/
√

x1)

× φNM(~k⊥)φnm(−
1

√
x1 + x2

~l⊥) .

(C.25)

The integral over one 2D-HO function could be carried out directly,∫
d2~k⊥
(2π)2 (kR)

s
φNM(~k⊥) = (−1)N2sκs+1

√
(N + s)!
πN!

δM+s,0 . (C.26)

Π(t, x, z, ~∆⊥) =

(√ x1x2

x1 + x2

)t+2 t∑
s=0

(
t
s

)
(−

√
x2

x1(x1 + x2)
lR)t−s

∑
Nnm

MN−snm
n1m1n2−m2

(
√

x2/
√

x1)

× φnm(−
1

√
x1 + x2

~l⊥)(−1)N2sκs+1

√
(N + s)!
πN!

.

(C.27)

We thereby arrive at an alternative expression to Eq. (C.17).

C.2 The longitudinal integral

The longitudinal integral is also in the form of basis function convolution,∫ 1

0
dx f (x)χl(x)χl′(x) . (C.28)

Considering that the basis function χl(x) is a modified polynomial function, the n-point Gaussian quadrature

rule is a suitable choice to carry out the integral. This method yields an exact result for polynomials of

degree 2n − 1 or less by a choice of nodes xi and weights wi for i = 1, . . . , n.∫ b

a
dx f (x) =

n∑
i

wi f (xi) .
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APPENDIX D. LORENTZ STRUCTURE DECOMPOSITION

According to spacetime translational invariance, the matrix element of the EM current operator satisfies

〈ψ′h(P′, j′,m′j)| J
µ(x) |ψh(P, j,m j)〉 = 〈ψ′h(P′, j′,m′j)| J

µ(0) |ψh(P, j,m j)〉 ei(P−P′)x . (D.1)

The current conservation condition ∂µJµ = 0 leads to

(P′ − P)µ 〈ψ
′
h(P′, j′,m′j)| J

µ(0) |ψh(P, j,m j)〉 = 0 . (D.2)

The charge operator on the light front is defined as

Q ≡
∫

dx+ d2x⊥J+(x) . (D.3)

The eigenvalue of Q on for a particle state is interpreted as the charge of that particle,

Q |ψh(P, j,m j)〉 = eq |ψh(P, j,m j)〉 . (D.4)

The evaluation of the charge operator on a particle state leads to a normalization relation at zero momentum

transfer.

〈ψh(P′, j,m j)|Q |ψh(P, j,m j)〉 =

∫
dx+ d2x⊥ 〈ψh(P′, j,m j)| J+(x) |ψh(P, j,m j)〉 . (D.5)

〈ψh(P′, j,m j)| J+(0) |ψh(P, j,m j)〉 = 2eqP+δ3(P − P′) . (D.6)

The form factors of particle transitions are those coefficients Fi of vectors Vi obtained by decomposing the

hadron matrix element,

〈ψ′h(P′, j′,m′j)| J
µ(0) |ψh(P, j,m j)〉 =

n∑
i

FiV
µ
i . (D.7)
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D.1 Spin 0 mesons

In the quark model, a spin-0 (J = 0) meson could be either a scalar 0+ or a pseudo-scalar 0−. And C = 1

for quarkonium. The matrix element of the current reads

〈h′qq̄(P′, j′ = m′i = 0)| Jµ(0) |hqq̄(P, j = mi = 0)〉 = eqJ
µ , (D.8)

where J µ is a four-vector function of P′µ and Pµ. Relevant scalars are |P′|, |P| and P′ · P. The first two are

fixed by the on shell conditions,

P′µP′µ = m2
h′ , PµPµ = m2

h . (D.9)

Therefore the coefficients of vectors should only depend on P′ · P. Define

qµ ≡ P′µ − Pµ, p̄µ ≡ P′µ + Pµ , (D.10)

and decompose J µ into the form of

J µ = qµH(q2) + p̄µF(q2) , (D.11)

The condition of current conservation in Equation (D.2) requires,

qµ · qµH(q2) + qµ · p̄µF(q2) = 0 . (D.12)

This means there is only one independent form factor,

H(q2) = −
qµ · p̄µ

qµ · qµ
F(q2) = −

m2
h′ − m2

h

q2 F(q2) . (D.13)

It follows that

〈h′qq̄(P′)| Jµ(0) |hqq̄(P)〉 = eq[ p̄µ −
m2

h′ − m2
h

q2 qµ]F(q2) , (D.14)

and F(q2) is the electromagnetic form factor. To satisfy hermiticity,

〈h′qq̄(P′)| Jµ(0) |hqq̄(P)〉 = 〈hqq̄(P)| Jµ(0) |h′qq̄(P′)〉∗ , (D.15)

F(q2) must be real.
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For the elastic scattering, h′ = h, thus mh′ = mh,

〈hqq̄(P′)| Jµ(0) |hqq̄(P)〉 = eq p̄µF(q2) . (D.16)

Compare with the normalization relation in Eq. (D.6), we get F(0) = 1.

Let us now analyze the symmetries of parity and charge conjugation (see Appendix A.6), and find out

what kind of transitions are allowed. We first insert two complete sets of the parity operator to the matrix

element,

〈h′qq̄(P′,P2)| Jµ(0) |hqq̄(P,P1)〉 = 〈h′qq̄(P′,P2)|��−1Jµ(0)��−1 |hqq̄(P,P1)〉

=P2P1P
µ
ν 〈h

′
qq̄(P · P′,P2)| Jν(0) |hqq̄(P · P,P1)〉

=eqP2P1P
µ
νP

ν
ρ[ p̄ρ −

m2
h′ − m2

h

q2 qρ]F(q2)

=eqP2P1[ p̄µ −
m2

h′ − m2
h

q2 qµ]F(q2) .

(D.17)

Compare with Eq (D.14), we arrive at

P2P1 = +1 . (D.18)

This means the electromagnetic transitions of spin 0 particles preserves the parity. The allowed transition

modes are 0+ → 0+ (scalar-to-scalar) and 0− → 0− (pseudoscalar-to-pseudoscalar).

We then consider the charge conjugation of quarkonium.

〈h′qq̄(P′,C2)| Jµ(0) |hqq̄(P,C1)〉 = 〈h′qq̄(P′,C2)|��−1Jµ(0)��−1 |hqq̄(P,C1)〉

= − C2C1 〈h′qq̄(P′,C2)| Jµ(0) |hqq̄(P,C1)〉 .
(D.19)

Compare with Eq (D.14), we arrive at

C2C1 = −1 . (D.20)

This means the electromagnetic transitions of quarkonium must change the charge conjugation. However,

all the spin 0 quarkonium have the same parity conjugation C = +1. Therefore the form factors for spin-0

quarkonium are zero.



www.manaraa.com

177

D.2 Spin-1 mesons

In the quark model, a spin 1 (J = 1) meson could be either a vector 1− or an axial-vector 1+. And

C = −1 for vector quarkonium, C = ±1 for axial-vector quarkonium . The matrix element of the current

reads

〈h′qq̄(P′, j′ = 1,m′j = 0,±1)| Jµ(0) |hqq̄(P, j = 1,m j = 0,±1)〉 = eqeα∗(P′,m′j)Γ
µ
αβe

β(P,m j) , (D.21)

where e, e∗ are spin vectors defined in Appendix A.4 and Γ
µ
αβ is a 3rd-order tensor function of Pµ, P′µ, gµν

and εµνρσ. All possible non-vanishing combinations of Γ
µ
αβ are

Pµ, P′µ :PµPαPβ, PµPαP′β, P
µP′αPβ, PµP′αP′β, P

′µP′αP′β, P
′µP′αPβ, P′

µPαP′β, P
′µPαPβ ,

gαβ :Pµgαβ, P′
µgαβ, g

µ
αPβ, g

µ
βPα, g

µ
αP′β, g

µ
βP′α ,

εµνρσ :εµαβρPρ, εµαβρP′ρ, εµαρσPρP′σPβ, ε
µ
βρσPρP′σPα, ε

µ
αρσPρP′σP′β, ε

µ
βρσPρP′σP′α,

P′µεαβρσPρP′σ, PµεαβρσPρP′σ .

(D.22)

Contracting with the spin vectors in Eq. (D.21), and with the Proca equation in Appendix A.4,

Pβeβ(P,m j) = 0 , P′αeα∗(P′,m′j) = 0 , (D.23)

we get all possible non-vanishing vectors of eα∗(P′,m′j)Γ
µ
αβe

β(P,m j).

Pµ(e∗(P′,m′j) · P)(e(P,m j) · P′), P′
µ(e∗(P′,m′j) · P)(e(P,m j) · P′) ,

Pµ(e∗(P′,m′j) · e(P,m j)), P′
µ(e∗(P′,m′j) · e(P,m j)),

eµ(P,m j)(e∗(P′,m′j) · P), eµ∗(P′,m′j)(e(P,m j) · P′) ,

ε
µ
αβρPρeα∗(P′,m′j)e

β(P,m j), ε
µ
αβρP′ρeα∗(P′,m′j)e

β(P,m j),

ε
µ
βρσPρP′σ(e∗(P′,m′j) · P)eβ(P,m j), ε

µ
αρσPρP′σ(e(P,m j) · P′)eα

∗(P′,m′j),

P′µεαβρσPρP′σeα∗(P′,m′j)e
β(P,m j), PµεαβρσPρP′σeα∗(P′,m′j)e

β(P,m j) .

(D.24)

Their coefficients are functions of |P′|, |P| and P′ · P. The first two are fixed by on shell conditions,

P′µP′µ = m2
h′ , PµPµ = m2

h . (D.25)
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Therefore those coefficients should only depend on P′ · P, or q2 if we define,

qµ ≡ P′µ − Pµ, p̄µ ≡ P′µ + Pµ . (D.26)

That leads to

qµqµ = q2 , qµ p̄µ = m2
h′ − m2

h ≡ ∆m . (D.27)

We now have twelve candidates of form factors, F1,...,12,

eα∗(P′,m′j)Γ
µ
αβe

β(P,m j)

= p̄µ(e∗(P′,m′j) · P)(e(P,m j) · P′)F1 + qµ(e∗(P′,m′j) · P)(e(P,m j) · P′)F2

+ p̄µ(e∗(P′,m′j) · e(P,m j))F3 + qµ(e∗(P′,m′j) · e(P,m j))F4

+ eµ(P,m j)(e∗(P′,m′j) · P)F5 + eµ∗(P′,m′j)(e(P,m j) · P′)F6

+ ε
µ
αβρ p̄ρeα∗(P′,m′j)e

β(P,m j)F7 + ε
µ
αβρq

ρeα∗(P′,m′j)e
β(P,m j)F8

+ ε
µ
βρσ p̄ρqσ(e∗(P′,m′j) · P)eβ(P,m j)F9 + ε

µ
αρσ p̄ρqσ(e(P,m j) · P′)eα

∗(P′,m′j)F10

+ qµεαβρσ p̄ρqσeα∗(P′,m′j)e
β(P,m j)F11 + p̄µεαβρσ p̄ρqσeα∗(P′,m′j)e

β(P,m j)F12 .

(D.28)

The condition of current conservation in Eq. (D.2) requires,

qµeα∗(P′,m′j)Γ
µ
αβe

β(P,m j) = 0 . (D.29)

That is,

0 =(e∗(P′,m′j) · P)(e(P,m j) · P′)[∆mF1 + q2F2]

+ (e∗(P′,m′j) · e(P,m j))[∆mF3 + q2F4]

+ (e(P,m j) · P′)(e∗(P′,m′j) · P)[F5 − F6]

+ qµε
µ
αβρ p̄ρeα∗(P′,m′j)e

β(P,m j)[F7 − q2F11 − ∆mF12]

+ qµε
µ
αβρq

ρeα∗(P′,m′j)e
β(P,m j)F8

+ qµε
µ
βρσ p̄ρqσ(e∗(P′,m′j) · P)eβ(P,m j)F9

+ qµε
µ
αρσ p̄ρqσ(e(P,m j) · P′)eα

∗(P′,m′j)F10 .

(D.30)
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F8, F9 and F10 could survive since their associated components vanish,

qµε
µ
βρσ p̄ρqσ = qσεσβρµ p̄ρqµ = −qσε

µ
βρσ p̄ρqµ → qµε

µ
βρσ p̄ρqσ = 0 . (D.31)

The other terms should satisfy

∆mF1 + q2F2 = 0 ,

∆mF3 + q2F4 = 0 ,

F5 − F6 = 0 ,

F7 − q2F11 − ∆mF12 = 0 .

(D.32)

Taking these relations into account, we rewrite the vector decomposition with new coefficients,

eα∗(P′,m′j)Γ
µ
αβe

β(P,m j)

=(e∗(P′,m′j) · P)(e(P,m j) · P′)[ p̄µ − qµ
∆m

q2 ]G1

+ (e∗(P′,m′j) · e(P,m j))[p̄µ − qµ
∆m

q2 ]G2

+ [eµ(P,m j)(e∗(P′,m′j) · P) + eµ∗(P′,m′j)(e(P,m j) · P′)]G3

+ [εµαβρ p̄ρ + qµεαβρσ p̄ρqσ
1
q2 ]eα∗(P′,m′j)e

β(P,m j)F7

+ ε
µ
αβρq

ρeα∗(P′,m′j)e
β(P,m j)G4

+ ε
µ
βρσ p̄ρqσ(e∗(P′,m′j) · P)eβ(P,m j)G5 + ε

µ
αρσ p̄ρqσ(e(P,m j) · P′)eα

∗(P′,m′j)G6

+ εαβρσ p̄ρqσeα∗(P′,m′j)e
β(P,m j)[ p̄µ −

∆m

q2 qµ]F12 .

(D.33)

Inserting two complete sets of parity operators,

〈h′qq̄(P′,m′j,P2)| Jµ(0) |hqq̄(P,m j,P1)〉

= 〈h′qq̄(P′,m′j,P2)|��−1Jµ(0)��−1 |hqq̄(P,m j,P1)〉

=P2P1P
µ
ν 〈h

′
qq̄(P · P′,m′j,P2)| Jν(0) |hqq̄(P · P,m j,P1)〉 .

(D.34)
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With Eqs. (D.21) and (D.33), we get

〈h′qq̄(P · P′,m′j,P2)|Jν(0) |hqq̄(P · P,m j,P1)〉 /eq

=(e∗(P · P′,m′j) · (P · P))(e(P · P,m j) · (P · P′))Pνκ[ p̄κ − qκ
∆m

q2 ]G1

+ (e∗(P · P′,m′j) · e(P · P,m j))Pνκ[ p̄κ − qκ
∆m

q2 ]G2

+ [eν(P · P,m j)(e∗(P · P′,m′j) · (P · P))

+ eν∗(P · P′,m′j)(e(P · P,m j) · (P · P′))]G3

+ εναβρP
ρ
κq

κeα∗(P · P′,m′j)e
β(P · P,m j)G4

+ ενβρσP
ρ
κ1P

σ
κ2

p̄κ1qκ2(e∗(P · P′,m′j) · (P · P))eβ(P · P,m j)G5

+ εναρσP
ρ
κ1P

σ
κ2

p̄κ1qκ2(e(P · P,m j) · (P · P′))eα
∗(P · P′,m′j)G6

+ εαβρσP
ρ
κ1P

σ
κ2

p̄κ1qκ2eα∗(P · P′,m′j)e
β(P · P,m j)Pνκ[ p̄κ − qκ

∆m

q2 ]G7 .

(D.35)

The effect of parity transformation on spin vector are

eµ(P · P,m j) = −P
µ
νeν(P,m j) , (D.36)

e∗(P · P′,m′j) · (P · P) = −Pνκe
κ∗(P′,m′j)P

χ
νPχ = −e∗(P′,m′j) · P , (D.37)

e∗(P · P′,m′j) · e(P · P,m j) = Pνκe
κ∗(P′,m′j)P

χ
νeχ∗(P′,m′j) = e∗(P′,m′j) · e(P,m j) . (D.38)

The definition of Levi-Civita tensor leads to

P
ρ
κ1P

σ
κ2
Pακ3
P
β
κ4ερσαβ = εκ1κ2κ3κ4(detP) = −εκ1κ2κ3κ4 . (D.39)

It follows that

P
ρ
κ1P

σ
κ2
Pακ3
P
β
κ4P

κ4
µ ερσαβ = P

ρ
κ1P

σ
κ2
Pακ3

ερσαµ = −εκ1κ2κ3κ4P
κ4
µ . (D.40)
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The matrix element under the parity transformation becomes

〈h′qq̄(P · P′,m′j,P2)|Jν(0) |hqq̄(P · P,m j,P1)〉 /eq

=(e∗(P′,m′j) · P)(e(P,m j) · P′)Pνκ[ p̄κ − qκ
∆m

q2 ]G1

+ (e∗(P′,m′j) · e(P,m j))Pνκ[ p̄κ − qκ
∆m

q2 ]G2

+ Pνκ[e
κ(P,m j)(e∗(P′,m′j) · P) + eκ∗(P′,m′j)(e(P,m j) · P′)]G3

− Pνκε
κ
κ1κ2κ3

qκ3eκ1∗(P′,m′j)e
κ2(P,m j)G4

− Pνκε
κ
κ3κ1κ2

p̄κ1qκ2(e∗(P′,m′j) · P)eκ3(P,m j)G5

− Pνκε
κ
κ3κ1κ2

p̄κ1qκ2(e(P,m j) · P′)eκ3∗(P′,m′j)G6

− εκ3κ4κ1κ2 p̄κ1qκ2eκ3∗(P′,m′j)e
κ4(P,m j)Pνκ[p̄κ − qκ

∆m

q2 ]G7 .

(D.41)

Insert Eq. (D.41) into Eq. (D.34), we find that

P2P1 =


+1 → G4,G5,G6,G7 = 0

−1 → G1,G2,G3 = 0
. (D.42)

This implies that G1,G2,G3 are the form factors of parity conserved transitions, and G4,G5,G6,G7 are the

form factors of parity flipped transitions. We will discuss them separately in the following.

Vector-to-vector (axial-vector-to-axial-vector) Form Factor

Following our previous discussion, the vector-to-vector (axial-vector-to-axial-vector) transition does not

change partiy, and their form factors are defined as

〈h′qq̄(P′, j′ = 1,m′j = 0,±1,P2 = P1)| Jµ(0) |hqq̄(P, j = 1,m j = 0,±1,P1 = ±1)〉

=eq

[
(e∗(P′,m′j) · P)(e(P,m j) · P′)[ p̄µ − qµ

∆m

q2 ]G1(q2)

+ (e∗(P′,m′j) · e(P,m j))[p̄µ − qµ
∆m

q2 ]G2(q2)

+ [eµ(P,m j)(e∗(P′,m′j) · P) + eµ∗(P′,m′j)(e(P,m j) · P′)]G3(q2)
]
.

(D.43)
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For the elastic scattering, h′ = h, thus mh′ = mh and ∆m = 0,

〈hqq̄(P′, j′ = 1,m′j,P2 = P1)| Jµ(0) |hqq̄(P, j = 1,m j,P1 = ±1)〉

=eq

[
(e∗(P′,m′j) · P)(e(P,m j) · P′) p̄µG1(q2) + (e∗(P′,m′j) · e(P,m j)) p̄µG2(q2)

+ [eµ(P,m j)(e∗(P′,m′j) · P) + eµ∗(P′,m′j)(e(P,m j) · P′)]G3(q2)
]
.

(D.44)

Now Gi(q2) are the elastic form factors. Setting P′ = P and µ = +, we have

〈hqq̄(P, j′ = 1,m′j,P2 = P1)| J+(0) |hqq̄(P, j = 1,m j,P1 = ±1)〉 = −2eqP+G2(0) . (D.45)

Eq. (D.6) implies that G2(0) = −1.

As we have seen in Eq. (D.19), the electromagnetic transition must flip the charge conjugation of the

particle, so the vector 1−− to vector 1−− or axial-vector 1+−(1++) to axial-vector 1+−(1++) transitions are

forbidden. The only allowed transition is

1+−(axial-vector)→ 1++(axial-vector) ,

A widely used convention is formulated with the J+ current in the Drell-Yan frame,

〈hqq̄(P′, j′ = 1,m′j,P2 = P1)| J+(0) |hqq̄(P, j = 1,m j,P1 = ±1)〉

=eq

[
2P+[(e∗(P′,m′j) · P)(e(P,m j) · P′)G1(q2) + (e∗(P′,m′j) · e(P,m j))G2(q2)]

+ [e+(P,m j)(e∗(P′,m′j) · P) + e+∗(P′,m′j)(e(P,m j) · P′)]G3(q2)
]
.

(D.46)

Vector Axial-vector Transition Form Factor

The vector axial-vector transitions flip the parity, and their form factors are defined as

〈 f ′(P′, j′ = 1,m′j = 0,±1,P2 = −P1)| Jµ(0) | f (P, j = 1,m j = 0,±1,P1 = ±1)〉

=eq

[
ε
µ
αβρq

ρeα∗(P′,m′j)e
β(P,m j)H1(q2) + ε

µ
βρσ p̄ρqσ(e∗(P′,m′j) · P)eβ(P,m j)H2(q2)

+ ε
µ
αρσ p̄ρqσ(e(P,m j) · P′)eα

∗(P′,m′j)H3(q2)

+ εαβρσ p̄ρqσeα∗(P′,m′j)e
β(P,m j)[ p̄µ − qµ

∆m

q2 ]H4(q2)
]
.

(D.47)
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D.3 Spin-0↔ spin-1 mesons

The matrix element of the transition between a spin-0 and a spin-1 meson reads

〈h′qq̄(P′, j′ = 1,m′j = 0,±1)| Jµ(0) |hqq̄(P, j = 0,m j = 0)〉 = eα∗(P′,m′j)Γ
µ
α , (D.48)

where e∗ is the spin vector defined in Appendix A.4 and Γ
µ
α is a 2nd-order tensor function of Pµ, P′µ, gµν and

εµνρσ. Note that we did not write out the charge here for simplicity. All possible non-vanishing combinations

are

Pµ, P′µ :PµPα, PµP′α, P
′µP′α, P

′µPα ,

gαβ :gµα ,

εµνρσ :εµαρσPρP′σ .

(D.49)

Contracting with the spin vectors in Eq. (D.21), and according to the Proca equation in A.4,

Pβeβ(P,m j) = 0 , P′αeα∗(P′,m′j) = 0 , (D.50)

we get all possible non-vanishing vectors of eα∗(P′,m′j)Γ
µ
α.

Pµ(e∗(P′,m′j) · P), P′µ(e∗(P′,m′j) · P) ,

eµ∗(P′,m′j) ,

ε
µ
αρσPρP′σeα∗(P′,m′j) .

(D.51)

Their coefficients are functions of |P′|, |P| and P′ · P. The first two are fixed by on shell conditions,

P′µP′µ = m2
h′ , PµPµ = m2

h . (D.52)

Therefore those coefficients should only depend on P′ · P. For convenience, we define

qµ ≡ P′µ − Pµ, p̄µ ≡ P′µ + Pµ . (D.53)

The on shell condition now reads

qµqµ = q2 , qµ p̄µ = m2
h′ − m2

h ≡ ∆m . (D.54)
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We thereby write eα∗(P′,m′j)Γ
µ
α as a linear combination of the vectors we found,

eα∗(P′,m′j)Γ
µ
α =p̄µ(e∗(P′,m′j) · P)F1 + qµ(e∗(P′,m′j) · P)F2 + eµ∗(P′,m′j)F3

+ ε
µ
αρσ p̄ρqσeα∗(P′,m′j)F4 .

(D.55)

The condition of current conservation in Eq. (D.2) requires,

qµeα∗(P′,m′j)Γ
µ
α = 0 . (D.56)

That is,

0 =(e∗(P′,m′j) · P)[∆mF1 + q2F2 − F3] + ε
µ
αρσ p̄ρqσqµeα∗(P′,m′j)F4 . (D.57)

F4 survives since

ε
µ
αρσ p̄ρqσqµ = 0 (D.58)

The other terms satisfy,

∆mF1 + q2F2 − F3 = 0 (D.59)

We therefore rewrite the vector decomposition with new coefficients,

eα∗(P′,m′j)Γ
µ
α =[ p̄µ(e∗(P′,m′j) · P) − qµ(e∗(P′,m′j) · P)∆m/q2]H1

+ [eµ∗(P′,m′j) + qµ(e∗(P′,m′j) · P)/q2]H2 + ε
µ
αρσ p̄ρqσeα∗(P′,m′j)H3 .

(D.60)

Parity invariance requires that

〈h′qq̄(P′, j′ = 1,m′j,P2)|Jµ(0) |hqq̄(P, j = 0,m j,P1)〉

= 〈h′qq̄(P′, j′ = 1,m′j,P2)|��−1Jµ(0)��−1 |hqq̄(P, j = 0,m j,P1)〉

=P2P1P
µ
ν 〈h

′
qq̄(P · P′, j′ = 1,m′j,P2)| Jν(0) |hqq̄(P · P, j = 0,m j,P1)〉 .

(D.61)

The matrix element under the parity transformation reads

〈h′qq̄(P · P′, j′ = 1,m′j,P2)|Jν(0) |hqq̄(P · P, j = 0,m j,P1)〉

=Pνκ[ p̄κ(e∗(P · P′,m′j) · (P · P)) − qκ(e∗(P · P′,m′j) · (P · P))∆m/q2]H1

− Pνκ[e
κ∗(P · P′,m′j) + Pνκq

κ(e∗(P · P′,m′j) · (P · P))/q2]H2

− P
ρ
κ1P

σ
κ2
Pακ3

εναρσ p̄κ1qκ2eκ3∗(P′,m′j)H3 .

(D.62)
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By using Eqs. (D.36) to (D.40), we get

〈h′qq̄(P · P′, j′ = 1,m′j,P2)|Ψ̄γνΨ |hqq̄(P · P, j = 0,m j,P1)〉

= − Pνκ[ p̄κ(e∗(P′,m′j) · P) − qκ(e∗(P′,m′j) · P)∆m/q2]H1

− Pνκ[e
κ∗(P′,m′j) + Pνκq

κ(e∗(P′,m′j) · P)/q2]H2

+ Pνκε
κ
κ3κ1κ2

p̄κ1qκ2eκ3
∗
(P′,m′j)H3 .

(D.63)

Plug it back into Eq. (D.61), we find

P2P1 =


+1 → H1,H2 = 0

−1 → H3 = 0
. (D.64)

H1,H2 are form factors of parity flipped transition, and H3 are form factors of parity conserved transition.

We will discuss them separately in the following.

Scalar-to-vector (pseudoscalar-to-axial-vector) Transition Form Factor

The scalar-to-vector (pseudoscalar-to-axial-vector) form factors are defined as

〈h′qq̄(P′, j′ = 1,m′j = 0,±1,P2 = −P1)| Jµ(0) |hqq̄(P, j = 0,m j = 0,P1 = ±1)〉

=[ p̄µ(e∗(P′,m′j) · P) − qµ(e∗(P′,m′j) · P)∆m/q2]H1(q2)

+ [eµ∗(P′,m′j) + qµ(e∗(P′,m′j) · P)/q2]H2(q2) .

(D.65)

As we have seen in Eq. (D.19), the electromagnetic transition must flip the charge conjugation of the particle,

so the allowed transitions are

0++(scalar)→ 1−−(vector) ,

0−+( pseudoscalar )→ 1+−(axial-vector ).

The transition between pseudoscalar 0−+ and axial-vector 1++ is forbidden.
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Scalar-to-axial-vector (pseudoscalar-to-vector) Transition Form Factor

The scalar-to-axial-vector (pseudoscalar-to-vector) form factors are defined as

〈h′qq̄(P′, j′ = 1,m′j = 0,±1,P2 = P1)| Jµ(0) |hqq̄(P, j = 0,m j = 0,P1 = ±1)〉

=ε
µ
αρσ p̄ρqσeα∗(P′,m′j)H3(q2) .

(D.66)

As we have seen in Eq. (D.19), the electromagnetic transition must flip the charge conjugation of the particle,

so the allowed transitions are

0++(scalar)→ 1+−(axial-vector) ,

0−+( pseudoscalar )→ 1−−(vector ).

The transition between scalar 0++ and axial-vector 1++ is forbidden.
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